

Evaluating JULES and INLAND C fluxes using GEM/LBA data

Darren Slevin, Mat Williams, Tristan Williams University of Edinburgh

Celso von Randow, Manoel Cardoso, Aline Anderson de Castro Brazilian Institute for Space Research (INPE)

> Yadvinder Malhi + GEM team University of Oxford

+ Karina Williams, Anna Harper

Introduction

- Site level evaluation against GEM and LBA data, targeting biological processes
 - experiments to isolate process validation
- Brazilian C balance evaluation, targeting broader patterns and disturbance
 - Climate gradient analysis across GEM and LCB data
 - Comparison of JULES & INLAND with CARDAMOM modeldata fusion C outputs

Climate Science for Service Partnership Brazil

http://gem.tropicalforests.ox.ac.uk/

Santarem km67 flux site (LBA)

Global Ecosystem Monitoring (GEM)

http://gem.tropicalforests.ox.ac.uk/

International effort to measure and understand forest ecosystem functions and traits and how these will respond to climate change.

http://gem.tropicalforests.ox.ac.uk/

GEM data

- **Plant stocks and dynamics**: Above ground woody biomass and increment, fine root biomass, turnover and production, coarse woody debris (CWD) stocks and turnover (where collected), litter stocks and litterfall.
- Soil stocks and fluxes: Quality controlled soil texture, bulk density, soil C:N ratio, soil organic matter content and carbon stocks, soil CO₂ efflux (partitioned into heterotrophic and autotrophic components).
- Plant fluxes: Stem CO₂ efflux, CWD CO2 effluxes, leaf gas exchange parameters (photosynthesis, respiration) where collected, specific leaf area, leaf area index (LAI), leaf nitrogen and other nutrients.
- Quality controlled weather data from local meteorological stations, gap-filled, monthly soil moisture time series.

Study sites

Focus is on the major Brazilian biomes (Amazon rainforest, dry forest, and savanna).

- 5 GEM (Global Ecosystem Monitoring) sites.
- 8 LBA (Large- 1
 Scale Biosphere Atmosphere
 Experiment in 2
 Amazonia) sites.

Location of GEM/LBA sites used in project.

GEM sites provide comprehensive datasets on C cycling at ecosystem scale across South America.

JULES versus INLAND

• JULES vn5.2

- Joint UK Land Environment
 Simulator
- Multi-layer canopy (default is10) with 4 soil layers (3m depth)
- 13 surface types
 - → 9 natural PFTs and 4 crop PFTs

- INLAND vn2.0
 - INtegrated LAND Surface model
 - Derived from IBIS DGVM
 - 2 layer canopy and 6 soil layers (4m depth)
 - 16 surface types
 - → 12 natural PFTs and 4 crop PFTs

Broadly similar PFT types (e.g. tropical broadleaf evergreen, temperate broadleaf evergreen, evergreen shrubs)

Both represent terrestrial surface physical processes, canopy physiology, phenology, vegetation dynamics, terrestrial C balance and water cycle.

Research questions

• Do the LSMs correctly represent the partitioning of NEE into its biological components i.e.\,GPP, NPP, Rh and Ra?

• Do the LSMS represent the sensitivity of C fluxes to environmental drivers correctly?

Do the LSMs correctly represent the partitioning of NEE into its biological components i.e.\,GPP, NPP, Rh and Ra?

- Both models underestimated all fluxes at all sites in comparisons with GEM observations
- Underestimation of GPP
 - → JULES by 36% and INLAND by 56% across all sites
- Overall underestimation was greatest for INLAND (on average 38% of magnitude of GEM data), compared to JULES (48% of GEM)

GPP = NPP + Ra; Reco = Rh + Ra

Do the LSMs correctly represent the partitioning of NEE into its biological components i.e.\,GPP, NPP, Rh and Ra?

LAI

Strong seasonal cycle of GPP in the models Likely linked to stomatal

closure as modelled seasonality in LAI is relatively minor

GPP = NPP + Ra; Reco = Rh + Ra

Carbon use efficiency (CUE)

At the 5 GEM sites, the estimated CUE varied from 0.25-0.41, with a mean of 0.36

Overall, modelled CUEs were a small fraction (21% for JULES and 29% for INLAND) of the GEM estimates.

INLAND can generate **negative CUE** \rightarrow NPP < 0 in some months

Year	Model	CAX-04	CAX-06	KEN-02	TAM-05	TAM-06
	INLAND	0.1	0.1	-	0.27	0.27
2009	JULES	0.14	0.06	0.16	0.03	0.04
	GEM	0.26	0.39	0.38	0.38	0.36
2010	INLAND	0.17	0.17	-	-0.11	-0.11
	JULES	0.13	0.07	0.11	0.02	0.03
	GEM	0.25	0.43	0.38	0.38	0.4
	INLAND	0.13	0.13	-	0.08	0.08
CUE	JULES	0.13	0.06	0.13	0.02	0.03
	GEM	0.25	0.41	0.38	0.38	0.38

CUE = NPP/GPP

Do the LSMs represent the sensitivity of C fluxes to environmental drivers correctly?

Random Forest machine learning algorithm used to identify environmental controls on variability of GPP, Reco and NEE.

Primary Tropical Moist Forest

Do the LSMs represent the sensitivity of C fluxes to environmental drivers correctly?

Random Forest machine learning algorithm used to identify environmental controls on variability of GPP, Reco and NEE.

Strongest sensitivity of FLUX and JULES C fluxes were due to variation in **soil moisture** during low rainfall months.

Primary Tropical Moist Forest

Pasture

		FLUX				INLAND				JULES			
	Site	tair	SW	qair	soil	tair	SW	qair	soil	tair	SW	qair	soil
NEE	BAN	1.82	4.53	2.04	3.59	2.93	5.15	1.68	2.21	1.62	0.81	1.68	7.86
	K34	2.62	2.57	2.68	4.12	0.94	9.46	0.71	0.87	2.82	1.99	2.92	4.25
	K83	2.66	4.15	2.44	2.73	1.87	7.13	1.22	1.76	3.15	1.07	1.89	5.87
	RJA	2.72	2.6	2.7	4.02	1.61	6.08	2.55	1.74	2.38	2.53	2.32	4.75

INLAND has strong sensitivity to radiation during the wet season.

Green is the most important, then red, blue, with cyan being the least important.

Model Evaluation Frameworks - ILAMB

• The International Land Model Benchmarking (ILAMB) project is a model-data intercomparison and integration project and software package designed to improve the performance of land models. (Oak Ridge National Lab, US)

ILAMB THE INTERNATIONAL LAND MODEL	BENCHMARKING PROJECT		ILAMB Overview Source	Nathan Collier / ILAMB Overview HTTPS ~ https://bitbucket.org	/ncollier/ilamb.gi	Recent activity 🔊	
HOME BENCHMARKS RI	SULTS & DIAGNOSTICS MEETINGS PUBLICATIONS ABOUT		¢ Commits	Last updated 2018-06-19 Language Python Access level Read	0 13 Open PRs Watchers	2 commits Pushed to ncollier/ilamb d97b374 major shift in methodology to re bc6e87a Improvements to allow for readi Networkers allow area	
2016 ILAMB Workshop Report	Welcome to ILAMB! The International Land Mode integration project designed to design of new measurement processes. Building upon past	tercomp [arallel, in key la LAMB a	 Pipelines Issues Downloads 	The ILAMB Benchmar	7 10 Branches Forks king System marking (ILAMB) project is itegration project	 parallel confunctions on single node Issue #40 updated in ncollier/Ilamb Nathan Collier - 2018-05-16 parallel confruntations on single node Issue #40 commented on in ncollier/Ilamb Sterling Baldwin - 2018-05-16 	
	 develop internationally a promote the use of thes strengthen linkages between experimental, remote sensing, and similar mode the design of new model tests and new measurement programs, and support the design and development of a new, open source, benchmarking softw by the international community. 	intercon ling com vare sys		Open source	they land models and, in measurement campaigns th key land surface tudles, the tks for land nese ty for model	 parallel confruntations on single node Issue #40 commented on In ncollier/llamb Nathan Collier - 2018-05-16 parallel confruntations on single node Issue #40 created in ncollier/llamb Sterling Baldwin - 2018-05-14 	
The report from the second ILAMB Workshop in the U.S. was published in	Improving the representation of the carbon cycle and land su climate models requires extensive comparison of model results This process is difficult and time intensive. Past data-mode	Irface p s with ob interc		code Python-base	, remote s in the rement iew, open use by the	1 commit Pushed to ncollier/Ilamb f79819e added capability to remove leap Nathan Collier · 2018-05-11 1 1 commit 1 commit	

Model Evaluation Frameworks - ILAMB

- Benchmark is CARDAMOM
- Stippling \rightarrow models fall within +/- 10% of benchmark

INLAND NPP closer to benchmark in **Amazon** state

Model Evaluation Frameworks - ILAMB

Both models do well at capturing GPP in Amazon state and Caatinga dry forest

Summary

- The LSMs used in this study do not well represent the partitioning of NEE into its individual components at the GEM sites
- The underestimation of GPP has knock-on effects for the simulation of other, downstream components of the C cycle
 - Driven by strong seasonal cycle in the models
 - Likely linked to stomatal closure as modelled seasonality in LAI is relatively minor
- Sensitivity of C fluxes to environmental drivers
 - Soil moisture (JULES)
 - Downward shortwave radiation (INLAND)