

### Updated Isoprene and Terpene Emission Factors for the Interactive BVOC Emission Scheme (iBVOC) in the Joint UK Land Environment Simulator (JULES)

JULES Science Meeting Oxford 2022

Dr James Weber University of Sheffield

Dr James A. King, Dr Katerina Sindelarova, Dr Maria Val Martin

j.weber@sheffield.ac.uk





## Plant Emissions and Atmospheric Chemistry







#### More tree, more isoprene? Widescale reforestation scenario

A WORLD





iBVOC in JULES

$$E_{PFT,mass} = E_{PFT,mass,0} \times f_{CO_2} \times f_{temp} \times f_{photo} \times f_{LAI}$$

$$\mu C g_{dw}^{-1} hr^{-1}$$

Simulates isoprene and terpene emissions with:

- JULES standalone
- Fully-coupled UKESM
- Atmosphere-only (aka AMIP) UKESM (~UKCA)

Could be easily expanded to simulate acetone and methanol.





| PFT              | $\text{IEF}_{\text{mass}}$ / $\mu$ gC $\text{g}_{\text{dw}}^{-1}$ hr <sup>-1</sup> |
|------------------|------------------------------------------------------------------------------------|
| Broadleaf trees  | 35                                                                                 |
| Needleleaf trees | 12                                                                                 |
| C3 grass         | 16                                                                                 |
| C4 grass         | 8                                                                                  |
| Shrubs           | 20                                                                                 |

Pacifico et al (2011) running JULES standalone

500 Tg yr<sup>-1</sup> isoprene

9% from C4 grass





| PFT                                 | Abbreviation | iBVOC Std |
|-------------------------------------|--------------|-----------|
| Broadleaf deciduous trees           | Br-Dec       | 35        |
| Broadleaf evergreen tropical trees  | Br-Ev-Trop   | 24        |
| Broadleaf evergreen temperate trees | Br-Ev-Temp   | 16        |
| Needleleaf deciduous trees          | Ne-Dec       | 8         |
| Needleleaf evergreen trees          | Ne-Ev        | 8         |
| C3 grass                            | C3 grass     | 16        |
| C3 crop                             | C3 crop      | 5         |
| C3 pasture                          | C3 pasture   | 5         |
| C4 grass                            | C4 grass     | 24        |
| C4 crop                             | C4 crop      | 5         |
| C4 pasture                          | C4 pasture   | 5         |
| Shrub deciduous                     | Shrub-Dec    | 10        |
| Shrub evergreen                     | Shrub-Ev     | 20        |





| PFT                                 | Abbreviation | iBVOC Std | ORCHIDEEv1<br>(Lathiere et al., 2006) |
|-------------------------------------|--------------|-----------|---------------------------------------|
| Broadleaf deciduous trees           | Br-Dec       | 35        | 24/45/8 <sup>c</sup>                  |
| Broadleaf evergreen tropical trees  | Br-Ev-Trop   | 24        | 24                                    |
| Broadleaf evergreen temperate trees | Br-Ev-Temp   | 16        | 16                                    |
| Needleleaf deciduous trees          | Ne-Dec       | 8         | 8                                     |
| Needleleaf evergreen trees          | Ne-Ev        | 8         | 8/8 <sup>d</sup>                      |
| C3 grass                            | C3 grass     | 16        | 16                                    |
| C3 crop                             | C3 crop      | 5         | 5                                     |
| C3 pasture                          | C3 pasture   | 5         | 5                                     |
| C4 grass                            | C4 grass     | 24        | 24                                    |
| C4 crop                             | C4 crop      | 5         | 5                                     |
| C4 pasture                          | C4 pasture   | 5         | 5                                     |
| Shrub deciduous                     | Shrub-Dec    | 10        | Not in scheme                         |
| Shrub evergreen                     | Shrub-Ev     | 20        | Not in scheme                         |

#### Messina et al (2016) – ORCHIDEE v2

In ORCHIDEE, shrubs are not represented by one particular PFT but are included partly in the PFTs 10 and 11 related to grasses (C3Gr and C4Gr). In order to determine the EF for grass, we collect the data available for shrub plant species.





| PFT                                 | Abbreviation | iBVOC Std | ORCHIDEEv1<br>(Lathiere et al., 2006) | ORCHIDEE v2<br>(Messina et al., 2016) |
|-------------------------------------|--------------|-----------|---------------------------------------|---------------------------------------|
| Broadleaf deciduous trees           | Br-Dec       | 35        | 24/45/8 <sup>c</sup>                  | 24/45/18 <sup>c</sup>                 |
| Broadleaf evergreen tropical trees  | Br-Ev-Trop   | 24        | 24                                    | 24                                    |
| Broadleaf evergreen temperate trees | Br-Ev-Temp   | 16        | 16                                    | 16                                    |
| Needleleaf deciduous trees          | Ne-Dec       | 8         | 8                                     | 0.5                                   |
| Needleleaf evergreen trees          | Ne-Ev        | 8         | 8/8 <sup>d</sup>                      | 8/8 <sup>d</sup>                      |
| C3 grass                            | C3 grass     | 16        | 16                                    | 12                                    |
| C3 crop                             | C3 crop      | 5         | 5                                     | 5                                     |
| C3 pasture                          | C3 pasture   | 5         | 5                                     | 5                                     |
| C4 grass                            | C4 grass     | 24        | 24                                    | 18                                    |
| C4 crop                             | C4 crop      | 5         | 5                                     | 5                                     |
| C4 pasture                          | C4 pasture   | 5         | 5                                     | 5                                     |
| Shrub deciduous                     | Shrub-Dec    | 10        | Not in scheme                         | Not in scheme                         |
| Shrub evergreen                     | Shrub-Ev     | 20        | Not in scheme                         | Not in scheme                         |







UNIVERSITY



### UKESM1 Historical 2010 $\rightarrow \sim 40$ % isoprene from C4 grass!

#### 1.1% MEGAN v2.1 – Guenther et al (2012)

"Only C3 plants emit isoprene at considerable rates. The emission is virtually absent in Crassulacean acid metabolism (CAM) and C4 plants." – Loreto and Fineschi (2015)





Convert MEGAN v2.1 EF for iBVOC Use



Apply temperature scaling to account for difference in standard conditions between iBVOC and MEGAN.





## Updated EF<sub>mass</sub>







### Impact of EF<sub>mass</sub> Changes

A WORLD

UNIVERSITY



|                       | Global Isoprene Emissions / Tg yr <sup>-1</sup> | Global Terpene Emissions / Tg yr <sup>-1</sup> |
|-----------------------|-------------------------------------------------|------------------------------------------------|
| Current PD            | 545                                             | 140                                            |
| Updated PD            | 498                                             | 130                                            |
| Current PI            | 744                                             | 140                                            |
| Updated PI            | 645                                             | 125                                            |
| Current 2050 SSP3-7.0 | 603                                             | 178                                            |
| Updated 2050 SSP3-7.0 | 556                                             | 163                                            |



#### Isoprene Column Comparison



CriS (Wells et al., 2020)





#### **Revisiting Reforestation**

A WORLD **100** 





### Takeaways

- 1. Updates to EF for isoprene and terpene to values derived from MEGAN v2.1
- 2. Fixes problem with unrealistic emissions from C4 grass and increases emissions from tropical broadleaf trees.
- 3. Important implications for simulating the effect of land use change (e.g. de/reforestation) on BVOC emissions and knock on effects to climate.
- 4. Global emissions within literature range. High bias against isoprene column increases slightly but biases in land use, other emissions and chemistry may also contribute to this.
- 5. Longer term development to iBVOC would be worthwhile including more sophisticated dependencies on temperature and CO<sub>2</sub>. Is there a hidden scaling issue in the JULES code?
- 6. Consider making full switch to MEGAN approach (emissions per unit area)?



#### Manuscript in review; GMD



### Climatic Impact of Widescale Reforestation









Looking to use UKESM's CO<sub>2</sub> emission driven approach – please get in touch if interested!

Maxforest scenario expands existing forests with the most suitable tree types while avoiding croplands.