

Plant Physiology

Stephen Sitch (Met Office)

JULES Science Meeting, 07-08 January 2008

- Overview of JULES current formulation
 - Coupled model of stomatal conductance and photosynthesis
 - Leaf Photosynthesis
 - Radiation interception
 - Plant Respiration
- Developments
 - Plant N-Cycle
 - Advanced Light Interception (SunFleck Model)
 - Plant-Ozone Interactions

Coupled model of stomatal conductance and leaf photosynthesis

JULES – Plant physiology meeting, $A = A_p \beta$

Wallingford, Feb 4

$$\beta = 'FSMC' = \frac{\theta - \theta_{w}}{\theta_{c} - \theta_{w}} for \theta_{w} < \theta < \theta_{c}$$

Leaf Photosynthesis

 $V_{\rm max} = 0.0008 n_l$

 $R_d = 0.015 V_{\text{max}} f_T(2.0)$

© Crown copyright Met Office

Met Office

Hadley Centre

Radiation Interception

 $I = Io * e^{-k} * LAI$

No scattering: i.e. sum of reflected and transmitted light

Two stream approximation (Suits, 1972; Sellers, 1995) : Vertical profiles:

upward and downward diffusive radiative fluxes

Takes into account:

Leaf and soil scattering LAI and Leaf angle distribution Angle of incident radiation Diffuse and direct radiation

Radiation Interception

 A_n = net carbon uptake = Total photosynthesis (GPP) - leaf respiration

diurnal cycle

Light response

> Jules with multilayer gives improved results to big leaf

Plant Respiration

$$R_p = R_{pm} + R_{pg}$$

$$R_{pg} = 0.25 \left\{ GPP - R_{pm} \right\}$$

$$R_{pm} = 0.012R_{dc} \left\{ \beta + \frac{(N_r + N_s)}{N_l} \right\}$$

$$N_{l} = n_{l}\sigma_{l}LAI$$
$$N_{r} = \mu_{rl}n_{l}R$$
$$N_{s} = \mu_{sl}n_{l}S,$$
$$S = 0.01hLAI$$

© Crown copyright Met Office

Friend et al., 1993

Recent Developments

Plant Nitrogen Cycle

Met Office Hadley Centre Fisher, J.B., Malhi, Y., Fisher, R.A., Sitch, S., Huntingford, C.

Solve decision equation

-NPP carbon cost on fixation or active uptake!

-Assumption: maintain C:N ratio over time-step

Plant Nitrogen Cycle

- Outputs
 - Plant Nitrogen
 - Available plant Carbon for growth
 - Nitrogen Deficit → Excess Carbon → ?
 Reduce LAI and/or down-regulate photosynthesis...
 Compare to other limitations (water, light, phosphorus, temperature,...)
 - Nitrogen reduction from soil
- Carbon addition to soil: from respiration in fixation and/or active uptake (Michaelis-Menten kinetics)

Advanced Light Interception (SunFleck Model)

Lina Mercado et al.

"Volcanic sunset" 1991.

Sunfleck Evaluation: Hainich (obs Diffuse/Direct)

Sunfleck Evaluation: 20 Flux sites (derived Diffuse/Direct)

Plant Ozone Injury

Effects of Ozone Exposure on Plants

Hadley Centre

- O_3 reduces plant production
 - causes cellular damage inside leaves
 - reduced photosynthetic rates
 - Increased C-allocate to detoxify

and repair leaves

- O₃ reduces stomatal conductance
 - lowers internal leaf [CO₂] reducing rates of photosynthesis
 - reduces O₃ uptake.
- Investigate interactions at elevated [CO₂] &[O₃] © Crown copyright Met Office

MOSES-Ozone Model Calibration

Experimental Analysis

RelativeYield = $1 - b \cdot CUO_{>FO3crit}$

 $CUO_{>FO3crit}$ is the Cumulative leaf Uptake of O₃, over the experimental period. *b* is a plant type specific parameter.

Uddling et al. 2004, Ashmore 2005

MOSES-Ozone Model

 $A = A_n \cdot F$

$$F = 1 - a \cdot UO_{>FO3crin}$$

*UO*_{>FO3crit} is the instantaneous leaf uptake of O₃, and *a* is a plant type specific parameter. © Crown copyright Met Office

Plant – Ozone interactions

Large reductions in productivity and land carbon storage over temperate and tropical regions

- Elevated CO₂ affords some protection for plants against O₃ damage (~1/3)
- Large potential threat of elevated future [O₃] on the ability of many land ecosystems to sequester carbon
- Large indirect radiative forcing due to additional CO₂ in the atmosphere

Chemistry more important driver of climate change than hitherto expected % Δ GPP due to <u>O₃-effect</u>

Sitch et al., 2007

Future Developments

>Advanced light interception (i.e., sunfleck)

Improve representation of drought stress on photosynthesis

(β 'FSMC' - Workshop Feb 4., Wallingford)

Coupled Plant-Soil C/N cycle

>Plant-Ozone interactions

>Evaluate phenology scheme