JULES Hydrology Module update

Sonja Folwell (UKCEH), Nic Gedney (Met Office)

trunk (Doug Clark):

- Groundwater DGW (vn5.2, ported to vn6.3) under going testing and evaluation
- River routing/overbank inundation code (JULES CaMaFlood), but tickets to tidy up init_riviers_props
- Surface ponding (plans to include full coupling of vertical fluxes)
- Anthropogenic water use (water abstractions/returns, dam operation)

Adding water tracers (Merve Gorguner, University of Bristol/BAS/MO - EU TiPES)

The following branches have been developed under Hydro-JULES and are at different stages of being brought into the

Land Response Units for JULES

Rather than running JULES in grid cells, we cluster the landscape into areas which are 'similar' in some way Example JULES_LRU soil moisture outputs for Plynlimon, UK:

Gridded JULES soil moisture

JULES_LRU flow outputs can be routed -> river flow Here we use the unify framework for routing and find a pretty good match to NRFA observations ③

tps://github.com/chaneyn/HydroBlocks For unifhy see: <u>https://github.com/unifhy-org</u> For basis of clustering code see: h IHDTM: https://catalogue.ceh.ac.uk/documents/242384d6-ce65-4360-bf4e-3f6b4ed53034 Underlying data sets: CHESS: NRFA streamflow observations: https://nrfa.ceh.ac.uk/

Ecology & Hydrology

Alternative clustering JULES soil moisture

British **Geological Survey** NATURAL ENVIRONMENT RESEARCH COUNCIL

Improved Hydrology for Regional Environmental Prediction (REP)

UKCEH (Doug Clark), Met Office, BGS

Evaluating the potential of Hydro-JULES developments for regional coupled modelling Offline tests on ~2.2km grid, driven by meteorology from the UM

AutoAssess of 1979-2014 JJA 1.5m air-temperature for AMIP UM run with new soil ancillary

Excerpted from Patrick McGuire et al.'s talk at the annual JULES meeting (2022), entitled *"AMIP-style global soil simulations with JULES and the Unified Model:* The role of soil hydraulics model, pedotransfer function, and basic soil property map"

Both control & experiment used the same standard start-dump, without extra spinup.

These 35-year continuation runs (1979-2014)[™] used prior 1989-2008 runs as spinups. Both control & experiment used same constant-in-time&space atmospheric CO2 (348.5ppm = 1988 level)

Control =

CosbyEtAl. BC PTF UM/HWSD (0.0-0.3m) soil mineral maps JULES flag: l_vg_soil = FALSE

Experiment =

Zhang&Schaap H1 LS ROSETTA3 VG PTF

SoilGrids (0.6m) soil mineral maps

Much of the model<->model variance is due to l_vg_soil, but some is due to choice of PTF and mineral maps.

preliminary

p 12/15

Publications

Buechel, M., Slater, L. & Dadson, S. Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Commun Earth Environ 3, 6 (2022). https://doi.org/10.1038/s43247-021-00334-0

Hsi-Kai Chou, Boris F. Ochoa-Tocachi, Simon Moulds & Wouter Buytaert (2022) **Parameterizing the JULES land surface model for different land covers in the tropical Andes**, Hydrological Sciences Journal, DOI: 10.1080/02626667.2022.2094709

Parker, R. J., Wilson, C., Comyn-Platt, E., Hayman, G., Marthews, T. R., Bloom, A. A., Lunt, M. F., Gedney, N., Dadson, S. J., McNorton, J., Humpage, N., Boesch, H., Chipperfield, M. P., Palmer, P. I., and Yamazaki, D.: **Evaluation of Wetland CH4 in the JULES Land Surface Model Using Satellite Observations**, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-2, in review, 2022.

