Representation of Phosphorus cycle in JULES (JULES-CNP)

André Nakhavali Lina Mercado, Stephen Sitch, Iain Hartley University of Exeter, United Kingdom

JULES-CNP

Nakhavali, M. et al., : Representation of phosphorus cycle in Joint UK Land Environment Simulator (vn5.5_JULES-CNP), Geosci. Model Dev. https://doi.org/10.5194/gmd-2021-403

Modelled vs. measured soil phosphorus pools under ambient CO₂ (for the soil depth of 0-30 cm). The black line represents the standard deviation.

JULES-C, JULES-CN, and JULES-CNP modelled vs. measured C pools (leaf, root, wood, vegetation, and soil C) (in kg C m⁻²) and fluxes (BP and litter C) (in kg C m⁻² yr⁻¹) and CUE under ambient CO_2 . Note that CUE is unitless.

	GPP	NPP	CUE	Litter C	Leaf C	Root C	Wood C	Soil C
% Difference between								
JULES C/CN and JULES CNP	26%	31%	47%	49%	9%	9%	14%	31%
under eCO ₂								

 Elevated
 JULES C/CN models: GPP and NPP response is estimated as 36% and 57 %

 CO2
 UU ES CAR: CRP and NPP response is estimated as 38% and 3%

JULES CNP: GPP and NPP response is estimated as 28% and 2%

P limitation over NPP

Additional test sites

Observed and simulated (JULES-C, JULES-CN, JULES-CNP) C fluxes and pools (averaged measurements: red points; SD: red arrows) and available observed P (dark red points and lines, reported in ppm) at test sites across the Amazon (AGP, SA03, CAX), Gigante Peninsula (Gig. Pen.), and Hawaii Kokee (Hawaii)

Data and modelling close collaboration

Driving model with observations

Model calibration for study site

Improve model performance

Evaluation of nutrient limitation

BIFOR site modelling

900 1000

Historical NPP and total P

Developing JULES to reflect : Faster Decomposition Under Increased Atmospheric CO2 Limits Soil Carbon Storage

Results from a metanalysis : CO₂ enrichment stimulates both the input (+19.8%) and the turnover of C in soil (+16.5%)

The increase in soil C turnover with rising CO₂ leads to lower equilibrium soil C stocks than expected from the rise in soil C input alone

C loss from decomposition would increase with CO₂ enrichment because:

- The pool of soil C increased
- The rate of decomposition (k) increased

Incapability of models like JULES to simulate observed Soil C soil stabilization capacity /related to soil texture

$$\frac{\Delta S_{C_{DPM}}}{\Delta_t} = f_{DPM} \Lambda_C - R_{DPM}$$

$$\frac{\Delta S_{C_{RPM}}}{\Delta_t} = (1 - f_{DPM} \Lambda_C) - R_{RPM}$$

$$\frac{\Delta S_{C_{BIO}}}{\Delta_t} = 0.46(1 - \beta_R)R_S - R_{BIO}$$

$$\frac{\Delta S_{C_{HUM}}}{\Delta_t} = 0.54(1 - \beta_R)R_S \left(\frac{S_{C_{HUM}-max} - S_{C_{HUM}}}{S_{C_{HUM}-max}}\right) - R_{HUM}$$

	$\frac{\Delta S_{C_{F}}}{\Delta}$	$\frac{HUM}{t} = 0$).54(1	— <i>[</i>	$(R_R)R_S\left(\frac{S_{C_{HUM}-max}-S_{C_{HUM}}}{S_{C_{HUM}-max}}\right)-R_{HUM}$
Size class ^a	Ecosystem	Intercept	Slope	r^2	
0–20 μm	Cultivated	$4.38{\pm}0.68^b$	$0.26 {\pm} 0.01$	0.41	
	Grassland	2.21±1.94	$0.42 {\pm} 0.08$	0.44	
	Forest	$-2.51{\pm}0.55$	$0.63 {\pm} 0.01$	0.55	
					C in size fraction < 20 μ m (g kg ⁻¹ soil)
$0–50~\mu{\rm m}$	Cultivated	7.18 ± 3.04	0.2 ± 0.04	0.54	40
	Grassland	16.33 ± 4.69	$0.32 {\pm} 0.07$	0.35	
	Forest	$16.24{\pm}6.01$	$0.24{\pm}0.08$	0.35	
				2	
Size class	Clay type	Intercept	Slope	r^2	
0–20 µm	1:1	1.22 ± 0.37	$0.30 {\pm} 0.01$	0.74	
	2:1	3.86 ± 0.49	0.41 ± 0.01	0.39	
					0 20 40 60 80 100
$0–50~\mu{\rm m}$	1:1	5.5 ± 5.93	$0.26 {\pm} 0.13$	0.38	Particles < 20 μ m (%)
	2:1	14.76 ± 2.37	$0.21{\pm}0.03$	0.07	● Netherlands ○ Australia ▲ USA and Canada
					□ Germany ■ Africa △ C. + S. America

Relationship between the maximum amount of C associated with the particles < 20 μm – Hassnik et. al, Plant and Soil 191: 77–87, 1997

......

Regression equations relating silt plus clay proportion to silt and clay associated C- Six et al., Plant and Soil 241: 155–176, 2002

Thanks for your attention

Question?

