

Development of a UK (hydrology) configuration for JULES

Douglas Clark, July 2019

With input past and future from various others! e.g. Blyth, Dadson, Marthews, Martinez-de la Torre, Robinson

JLMP configurations

Global Land

underpins the weather and climate models, globally applicable, should be the best model for simulating exchange of heat, water and momentum.

Earth System

builds on global land to include interactive carbon, nitrogen and methane cycles, land-use and cover change. The best model for understanding carbon cycle and ecosystem processes

UK Hydrology Land

a regional configuration best suited to UK hydrological applications

should be the best model for simulating exchange of heat, water and momentum over the UK

Previous work

CHESS (Climate Hydrology and Ecology research Support System) Robinson et al., 2017, HESS, 21, 1189–1224

At the core of this is the CHESS-LAND configuration (e.g. suite u-au394). Gradual evolution of a best-guess-type starting config? Has been used and evaluated in various ways.

Modelled and observed runoff

Coupled land-atmos-ocean-wave system. UKC3, UKA3 (Lewis et al., 2019, GMD) e.g. suite u-ar588

UKV Operational NWP

CHESS-LAND and UKC3 both use PDM with slope-dependent parameters, based on Martinez et al. (2019), GMD

Hydrology

b = 2.0Slope-dependent threshold S_0/S_{max} $S_0/S_{\text{max}} = \max\left(1 - \frac{s}{s_{\text{max}}}, 0.0\right)$ Nash-Sutcliffe for daily slope-dependent riverflow CLASSIC-GB JULES-PDM slope dependent S₀/S_{max} 0.6 generally better than NS (-) JULES-PDM mcs JULES-PDM slope dependent b **PDM UKV** 0.4 JULES-PDM UKV JULES best TOPMODEL No parameterisation JULES no hyd 0.2 Note that there are other differences in the Class hydrology, e.g. l vg soil (u-au394 & u-ar588). Test catchments

Proposed approach

Rather than adopting e.g. UKA3, I propose to:

- Start from an existing JLMP configuration Gives a known relationship to other configurations. e.g. GL7.2, GL9
- Make targeted changes based on UKA3/CHESS-LAND where we have evidence (admittedly from other configs!) that a better approach exists.
 e.g. slope-dependent S₀/S_{max}

An initial suite will use a 1km grid and CHESS meteorological data.

To be investigated: differences between UKA3, CHESS-LAND, GL7/9.

