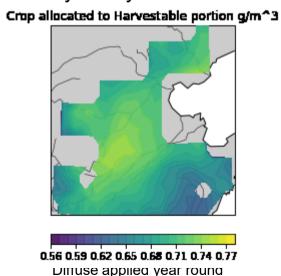
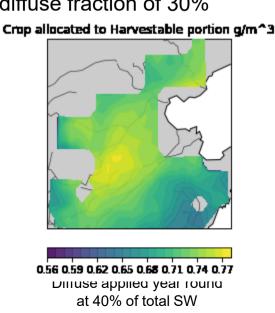
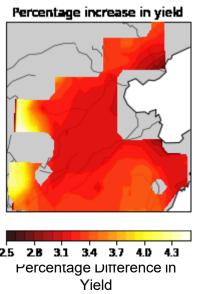
Megacity Aerosol Pollution & Crop Yield

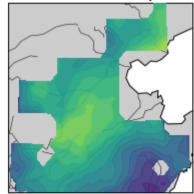

Diffuse Deigotifiertilisation Effect


- Deposition of PM as dust affects photosynthesis rates:
 - Reduces light interception
 - Reduces stomatal conduction
 - Increases leaf temperature
- Diffuse light fertilisation effect increases the proportion of light intercepted by lower leaves and reduces sunspot incidence


Effects of Diffuse Light

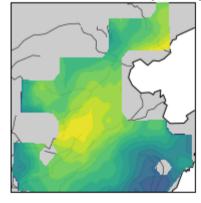
- North China Plains region at 0.25° resolution
- Increasing the percentage of diffuse light whilst keeping total SW constant increases crop yield
- When diffuse light for the year is set to a constant of 40% of total SW, this increases yield by 3-4% over a fixed diffuse fraction of 30%

at 30% of total SW



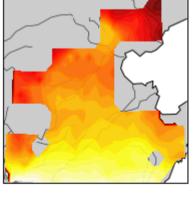
My Work

- Assessing impacts of timing and intensity of diffuse light on crop yields in the NCP using met data from 2014-2017
- When applied for one hour a day for the year, we found that diffuse light has greatest impact on the crop grown when applied between 12-1 throughout whole year
- These times align with the smallest zenithal angles during the runs


Crop allocated to Harvestable portion g/m^3

0.56 0.58 0.60 0.62 0.64 0.660 68 0.70 0.72

Diffuse applied between 7am and 8am year round


Crop allocated to Harvestable portion g/m^3

0.560.580.600.620.640.660.680.700.72

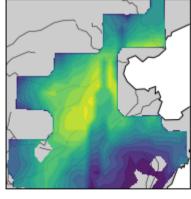
Diffuse applied between 12pm and 1pm year round

Percentage increase in yield

25 2B 31 34 37 4D 43 46 49

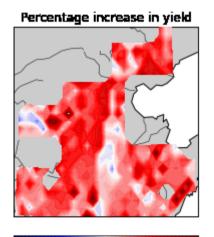
Percentage Difference in Yield

DVI Trigger for Diffuse Light Application


- Greatest impacts on final yield from diffuse light application appear when applied between DVI of 1.0 and 1.5
- For example, in 2015, differences of -0.5 2.5% in maximum carbon allocation to harvested parts of crop between yields when diffuse is applied from 1.0-1.5 DVI and when diffuse is applied between 0.5 and 1.0 DVI

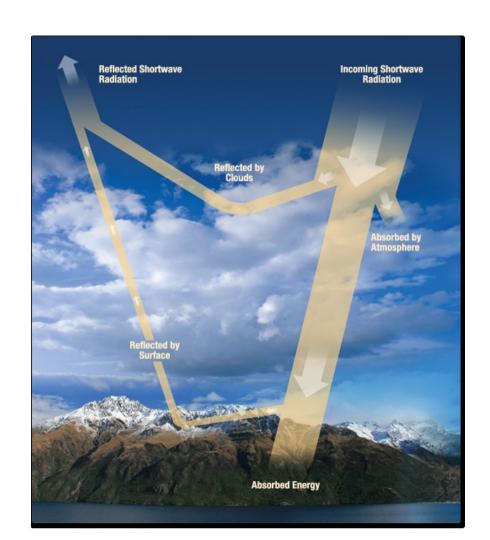
Diffuse applied between 0.5

and 1.0 DVI


Crop allocated to Harvestable portion g/m^3

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

Diffuse applied between 1.0

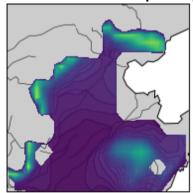

and 1.5 DVI

-2.5-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0
Percentage Difference in Yield

Next Steps

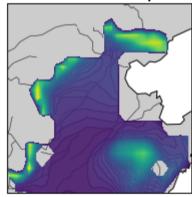
- Using a radiative forcing model to account for impacts from reductions to total light by PM
- Generate a response field for crop yield in the region to PM concentration and composition

Future Work


 Policy Implications of effects of PM on crop yields

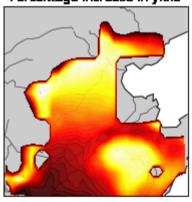
 Combinatorial effects of PM and Ozone

Fixed Temperature


Crop allocated to Harvestable portion g/m^3

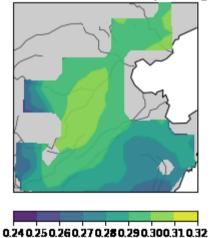
0.820.870.920.971.021.071.121.171.221.27

Diffuse applied between 7am and 8am year round

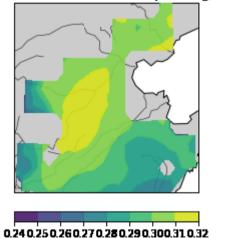

Crop allocated to Harvestable portion g/m^3

0.820.870.920.971.021.071.121.171.221.27

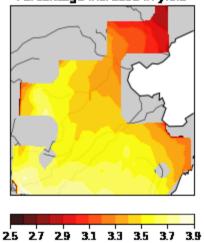
Diffuse applied between 12pm and 1pm year round


Percentage increase in yield

30 33 36 39 4.2 4.5 4.8 5.1 5.4 5.7 Percentage Difference in Yield


Fixed SW

Crop allocated to Harvestable portion g/m^3


Diffuse applied between 8am and 9am year round

Crop allocated to Harvestable portion g/m^3

Diffuse applied between 12pm and 1pm year round

Percentage increase in yield

Percentage Difference in Yield