

Joint Weather & Climate Research Programme – a partnership in weather and climate research

Atmospheric Dry Deposition in JULES

Garry Hayman¹

Douglas Clark¹, Claudia Steadman¹, Fiona O'Connor², Gerd Folberth², Jane Mulcahy², Oliver Wild³, Luke Abraham⁴

(1) Centre for Ecology & Hydrology, UK; (2) Hadley Centre, UK Met Office; (3) Lancaster University, UK; (4) NCAS and University of Cambridge, UK

> JULES Annual Meeting 22nd-23rd July 2019

Atmospheric dry deposition

- Important atmospheric process
 - Governs atmospheric abundance of many compounds (e.g., O₃, H₂O₂, HNO₃, SO₂, NH₃, aerosol, ...)
- Important process for the biosphere
 - Governs input of key nutrients/oxidants to vegetation
- Links atmosphere and biosphere
 - Contributes to climate and Earth system feedbacks

O₃ injury to wheat, Pakistan (courtesy of A. Wahid)

- Policy-relevant implications for air quality, crop yields, etc.
 - Critical loads for acid deposition and eutrophication
 - Ozone exposure and effects on human health and vegetation
 - Particulate matter (aerosol) and impact on human health

Modelling dry deposition processes

R_{sto}

stomatal resistance

Atmospheric dry deposition currently in UKCA ٠

Dry deposition schemes in the UKCA model

[O₃] Aerodynamic Atmosphere resistance (Ra) Turbulent Boundary laver resistance (Rb) transfer to the surface Cuticular resistance Stomatal resistance (Rcut) (Rstom) 5000 LAI In-canopy Aerod. Res. Ice Canopy (Rac) Res. (Rc) resistance Water (Rice) resistance (Rwat) Ground resistance (Rsoil) Bare soi Irban resistance esistance (Rbare) Rurb) Broad/needle leaf trees, C3-C4 grass, shrubs

Current scheme in UKCA (UKESM)

- ➢ Wesely (1989) scheme for gas-phase species
- Deposition of aerosol species based on roughness length and the use of prescribed deposition velocities. Also sedimentation.
- Need to mirror pft order/description used in JULES

HadGEM3 branch F. Centoni (CEH & U. Edinburgh)

- Implementation of Zhang et al. scheme (Atmos. Chem. Phys. 2003) for O₃
- Allows for stomatal blocking when wet, which reduces stomatal uptake.

Dry Deposition in UKESM:

Future Requirements

- Consistency between UKCA (Gas and Aerosols) and JULES as more land surface types added
- Deposition to other surfaces, e.g., ocean and cryosphere
- Move towards more process-based dry deposition schemes, especially for aerosol species
- Shift towards 'bidirectional surface exchange' schemes: deposition, (re-)emission and PBL mixing

Designing a new framework for modelling dry deposition

- Community consultation and workshop held in 2016/2017
- Where should dry deposition 'live'? JULES, UKCA or new interface module
- UKCA to provide surface concentrations with deposition fluxes returned
- In principle, UKCA will not need to know 'details' of surface

Status at last JULES annual meeting (September 2018)

Code development

- JULES vn5.0 Branch with atmospheric deposition: <u>https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/garryhayman/JULES_vn5.0</u> with_atmospheric_deposition
- Recoded UKCA gas-phase dry deposition routines (from UM vn10.9, October 2017)
- 12 new files added (existing and Zhang O_3 schemes as options) and 16 existing files edited

Model runs and testing

- Runs with standalone JULES Atmospheric Deposition branch (vn 5.0) at single sites
- Created offline 'test' model to compare outputs from JULES and UKCA deposition routines driven with the same values of the calling variables (taken from the standalone JULES runs)
- Confirmed resistance and deposition velocity terms were the same within platform/compiler precision (except where differences expected)
- Identified 'bug' in existing UKCA surface resistance routine: parts of code hardwired to 5-pft configuration. Now corrected by Alan Hewitt: <u>https://code.metoffice.gov.uk/trac/um/browser/main/branches/dev/alanjhewitt/vn11.1_fix_npft</u>

Progress since September 2018

- Further code development
 - ✓ Flexible on pft configuration and order
 - ✓ Replaced lookup tables in code to assign surface resistance parameters to pft and species with parameter values passed via namelist, which will avoid code change if add/change pft
 - Code added to input surface tracer concentrations as prescribed data (dimensions: time, tracer=ndep_species, land)
 - Boundary-layer height variable defined in JULES (zh) but fixed at 1 km in standalone version (needed to convert deposition velocities to deposition fluxes). Now prescribed data.
 - ✓ # of boundary layer levels (bl_levels, set in deposition namelist) and separation of boundary layer levels (dzl, fixed values for code development). dzl now prescribed data.
 - ✓ JULES deposition metadata added
- Code into trunk for JULES vn5.5 release (Doug Clark)
 - Upgraded to JULES vn5.4 (March 2019): <u>https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/garryhayman</u> /JULES_vn5.4_atmospheric_deposition
 - Branch with atmospheric deposition set-up and I/O (ticket 662): <u>https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/douglasclark/</u> <u>r14931_vn5.4_dry_deposition</u>

Deposition namelists: JULES vn5.5

JULES vn5.5: u-bk878

```
&jules_deposition
l_deposition=.false.
/
```

JULES vn5.5 - full namelist

```
&jules_deposition
dzl_const=20.0
dry_dep_model=1
l_deposition=.true.
l_deposition_flux=.true.
l_ukca_ddep_lev1=.true.
ndry_dep_species=6
tundra_s_limit=0.866
/
```

Parameter meaning:

- I_deposition is the master switch for atmospheric dry deposition in JULES
- dzl_const is a constant value for the separation of the boundary layer levels (in m)
- dry_dep_model = 1 (current implementation in UM-UKCA); = 2 (current UKCA implementation in JULES); = 3 (Zhang O₃ scheme)
- I_deposition_fluxes is a switch to use calculate deposition fluxes (requires surface species concentrations)
- I_ukca_ddep_lev1 is UKCA switch to calculate boundary-layer separation used in calculation of deposition velocities (true – use separation of bottom level, dzl(:,:,1); false – effectively use height of BL)
- ndry_dep_species is the number of deposited species. Needed to define size of new "species" dimension (in init_model_grid.inc, which is called before init_jules_deposition)
- tundra_s_limit is the sine of the latitude of the southern limit of the NH tundra

Deposition namelists: JULES vn5.5

JULES vn5.5 - full namelist

&jules_deposition_species cuticle_o3_io=5000.0 dep_species_name_io='03' diffusion_coeff_io=X.X diffusion_corr_io=1.6 rsurf_std_io=200.0,200.0,200.0,200.0,400.0,800.0,2200.0,800.0,2500.0 r_wet_soil_o3_io=500.0

&jules_deposition_species

dep_species_name_io='NO2'
diffusion_coeff_io=X.X
diffusion_corr_io=1.6
rsurf_std_io=225.0,225.0,400.0,400.0,600.0,1200.0,2600.0,1200.0,3500.0

[namelist:jules_depparm_species(4)]

dep_species_name_io='S02'
diffusion_coeff_io=X.X
diffusion_corr_io=1.9
dd_ice_coeff_io=0.0001,0.003308,0.1637
rsurf_io=100.0,100.0,150.0,350.0,400.0,400.0,10.0,700.0,1.00E+30

&jules_deposition_species ch4_scaling_io=15.0 ch4_up_flux_io=39.5,50.0,30.0,37.0,27.5,0.0,0.0,27.5,0.0 ch4dd_tundra_io=-4.757e-6,4.0288e-3,-1.13592,106.636

dep_species_name_io='CH4'

diffusion_coeff_io=X.X
rsurf_std_io=9*1.00E+30

&jules_deposition_species

dep_species_name_io='H2'

diffusion_coeff_io=X.X h2dd_c_io=19.70,19.70,17.70,1.235,1.0,0.0,0.0,17.70,0.0 h2dd_m_io=-41.90,-41.90,-41.39,-0.472,0.0,0.0,0.0,-41.39,0.0 h2dd_q_io=0.0,0.0,0.0,0.27,5*0.0 rsurf std io=1.00E+30,1.00E+30,4550.0,6*1.00E+30

<u>Notes</u>

- Duplicate namelists, one for each tracer
- diffusion_coeff_io diffusion coefficient for R_b (quasi-laminar resistance), currently calculated in code
- diffusion_corr_io diffusion correction to stomatal conductance (for O₃, SO₂, NO₂, PAN and NH₃)
- dep_species_name name of atmospheric tracer.
- rsurf_std_io(ntype) specifies the standard surface resistance R_c (dimension ntype), which may get modified.
- cuticle_o3_io, h2dd_c_io(ntype), ch4_up_flux_io(ntype) – speciesspecific terms (e.g., for O₃, H₂ and CH₄)

Evaluation

- Adapted JULES FLUXNET suite (u-al752) to use JULES Deposition Branch: u-bc577 (vn5.0) and u-bh191 (vn 5.4)
- Sourcing and collating driving meteorological, ancillary and deposition-related measurements for model evaluation

Site	Site biome	Data Availability			
		Met.	Ancillary	Deposition	Part of JULES FLUXNET Suite
Harvard Forest (US)	Deciduous broad-leaf forest	Y	Y	Not Yet	Y
Blodgett Forest (US)	Evergreen needle-leaf forest	Y	Y	Not Yet	Y
Hyytiälä (FI)	Evergreen needle-leaf forest	Y	Y	Y: O ₃	Y
Castel Porziano (IT)	Evergreen broad-leaf forest	Y	Y	Y: O ₃	Y
Grignon (FR)	Сгор	Y	Y	Y: O ₃	Y
Oensingen (CH)	Grassland	Y	Y	Y: O ₃	Y
Alice Holt (UK)	Broadleaf woodland				
Auchencorth Moss (UK)	Ombrotrophic peatland	Y	Y	Y	
Easter Bush (UK)	Improved grassland	Y	Y	Y	

Assistance of Karina Williams, Eddy Comyn-Platt and Carolina Duran Rojas gratefully acknowledged

FLUXNET output ...

FLUXNET suite output: Gross primary productivity

© Crown copyright

Time

Preliminary dry deposition comparison ...

FLUXNET suite output:

Vegetated surfaces: $V_d = 1/R_a + 2/R_b + 1/R_c$

Non-vegetated surfaces: $V_d = 1/R_a + 1/R_b + 1/R_c$

 $1/R_c = 1/R_{c \text{ stomatal}} + 1/R_{c \text{ non-stomatal}}$

Hyytiälä (Finland)Evergreen needle-leaf

forest

- O₃ deposition velocity
- Mean (min, max) diurnal cycle, June-August 2003
- Further investigation in progress to understand night-time differences

Castel Perziano: Stomatal Resistance

Castel Porziano (Italy)

- Broad-leaf forest
- O₃ stomatal resistance
- Time-series, July 2004

Relevant related activities

- > JULES
 - <u>Eleanor Blyth, Emma Robinson & Sebastian Garrigues</u>: Review of aerodynamic resistance (R_a) schemes
 - <u>Martin Best & Graham Weedon</u>: Revise roughness lengths (which affect friction velocity), following evaluation of JULES friction velocity against FLUXNET observations of momentum flux. Relevant to aerodynamic resistance
- UKESM
 - <u>Becky Oliver & Lina Mercado</u>: Implementation and testing of new photosynthesis scheme, based on Medlyn et al.. Relevant to stomatal conductance
- US Ozone Deposition
 - Presentation at workshop (2017)
 - Paper on Ozone Deposition

Current & Future Plans

- Comparison versus observations and other model outputs
 - Site-specific evaluation using modified JULES FLUXNET suites
 - Standalone gridded runs at UK and global scale
- Code development JULES standalone
 - Add new CEH science from EMEP model (with CEH Edinburgh)
 - Add further deposition code to JULES trunk (with Doug Clark)
 - Add current UKCA aerosol code discuss with dry deposition advisory group
- Code development coupled to UM
 - Get JULES-UKCA version working for UKESM
 - Add Ashok Luhar's O₃ deposition scheme to oceans

Deposition namelists: Development

JULES vn5.4 with atmospheric deposition

```
&jules_deposition
bl_levels=38
dry_dep_model=2
l_deposition=.true.
l_deposition_flux=.true.
l_deposition_print=.true.
l_ukca_ddep_lev1=.true.
ndep_species=6
/
```

<u>Notes</u>

- I_deposition is the master switch for atmospheric dry deposition in JULES
- bl_levels is number of BL levels
- dry_dep_model = 1 (current implementation in UM-UKCA); = 2 (current UKCA implementation in JULES); = 3 (Zhang O₃ scheme)
- I_deposition_fluxes is a switch to use calculate deposition fluxes (requires surface species concentrations)
- I_deposition_print is a temporary switch to output parameter values
- I_ukca_ddep_lev1 is UKCA switch to calculate boundary-layer separation used in calculation of deposition velocities (true – use separation of bottom level, dzl(:,:,1); false – effectively use height of BL)
- ndry_dep_species is the number of deposited species. Needed to define size of new "species" dimension (in init_model_grid.inc, which is called before init_jules_deposition)

Deposition namelists: Development

[namelist:jules_depparm_species(1)]
cuticle_o3=5000.0
dep_species_name_io='03'
!!rcutd0_zhang_io=6000.0,4000.0,4000.0,4000.0,5000.0,6000.0,0.0,0.0,0.0
!!rcutw0_zhang_io=400.0,200.0,200.0,200.0,300.0,400.0,0.0,0.0,0.0
rsurf_io=200.0,200.0,200.0,200.0,400.0,800.0,2200.0,800.0,2500.0
r_wet_o3=500.0

[namelist:jules_depparm_species(2)] ch4_mml=1.008e5 ch4_tar_scaling=15.0 ch4_up_flux_io=39.5,50.0,30.0,37.0,27.5,0.0,0.0,27.5,0.0 ch4dd_tun=-4.757e-6,4.0288e-3,-1.13592,106.636 dep_species_name_io='CH4' !!rcutd0_zhang_io=9*1.00E+30 !!rcutw0_zhang_io=9*1.00E+30 rsurf io=9*1.00E+30

[namelist:jules_depparm_species(3)]
dep_species_name_io='NO2'
!!rcutd0_zhang_io=9*1.00E+30
!!rcutw0_zhang_io=9*1.00E+30
rsurf_io=225.0,225.0,400.0,400.0,600.0,1200.0,2600.0,1200.0,3500.0

[namelist:jules_depparm_species(4)]
dep_species_name_io='SO2'
!!rcutd0_zhang_io=9*1.00E+30
!!rcutw0_zhang_io=9*1.00E+30
rsurf_io=100.0,100.0,150.0,350.0,400.0,400.0,10.0,700.0,1.00E+30
so2dd_ice=0.0001,0.003308,0.1637

[namelist:jules_depparm_species(6)]
dep_species_name_io='H2'
h2dd_c_io=19.70,19.70,17.70,1.235,1.0,0.0,0.0,0.17.70,0.0
h2dd_m_io=-41.90,-41.39,-0.472,0.0,0.0,0.0,-41.39,0.0
h2dd_q_io=0.0,0.0,0.0,0.27,5*0.0
!!rcutd0_zhang_io=9*1.00E+30
!!rcutw0_zhang_io=9*1.00E+30
rsurf io=1.00E+30,1.00E+30,4550.0,6*1.00E+30

<u>Notes</u>

- rsurf_io specifies the surface resistance (dimension ntype)
- rcutd0_zhang_io & rcutw0_zhang_io – surface resistance parameters (dimension npft) relevant to Zhang deposition scheme. Commented out as not used with dep_model = 2
- Species-specific terms (e.g., for H₂ and CH₄)
- Updated JULES branch and rose suites u-ax608 and u-ax609 (on JASMIN)

© Crown copyright