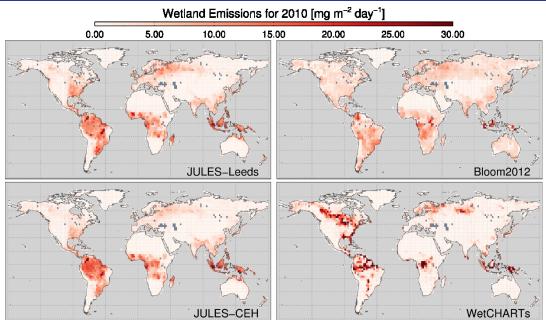
Exploring Constraints on a Wetland Methane Emission Ensemble with GOSAT

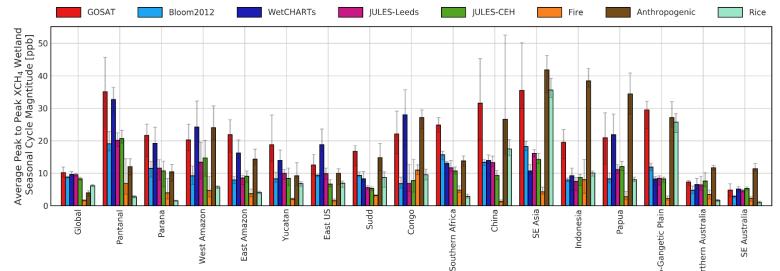
R. Parker, H. Boesch, C. Wilson, A. Bloom, E. Comyn-Platt, J. McNorton, G. Hayman, M. Chipperfield

Rob Parker | rjp23@le.ac.uk

Motivation

In Parker et al. 2018, Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH_4 observations, we found:

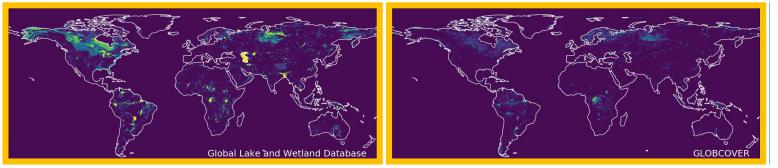

- Observations show that models underestimate tropical seasonal cycle of methane
- Large discrepancies between model and observations over South American wetlands
- Changes to wetland extent driven by ENSO cause large differences
- Wetland extent changes caused by overbank inundation, a process missing in these models
- This work builds upon this by considering larger ensembles of wetland emission datasets (WetCHARTs, JULES) and evaluates them against GOSAT CH₄ satellite observations
- □ Focus of this presentation will be an **initial**


evaluation of WetCHARTs + some bonus last minute JULES plots

WetCHARTs

- \Box WetCHARTs is an **ensemble** of CH₄ emissions produced by A. Bloom (NASA JPL)
- Different constraints on global total, respiration model, temperature dependence and extent parameterisation
- ❑ We used the ensemble mean in Parker et al. 2018 but now we want to study the full ensemble and compare to GOSAT CH₄ observations
- Interested in which ensemble members perform better in which regions to try and understand what factors are important (e.g. temperature vs extent)

1	2		3	
124.5	166	5	207.5	
1-8	9			
MsTMIP M	odels	CAF	RDAMOM	
1	2		3	
q10 = 1	q10 = 2	2	q10 = 3	
1	2		3	4
SWAMPS & GLWD			PREC & GLWD	PREC & GLOBCOVE
	124.5 1-8 MsTMIP M 1 q10 = 1 1 SWAMPS &	124.5 166 1-8 MSTMIP Models MSTMIP Models 1 1 1 1 10 = 1 1 10 = 1 SWAMPS & SWAMPS SWAMPS	124.5 166 1-8 MSTMIP Models MSTMIP Models CAR 1 2 q10 = 1 q10 = 2 1 2 SWAMPS & SWAMPS &	124.5 166 207.5 $1-8$ 9 MsTMIP Models CARDAMOM 1 2 3 $q10 = 1$ $q10 = 2$ $q10 = 3$ 1 2 3 8 8 8 8 8 8

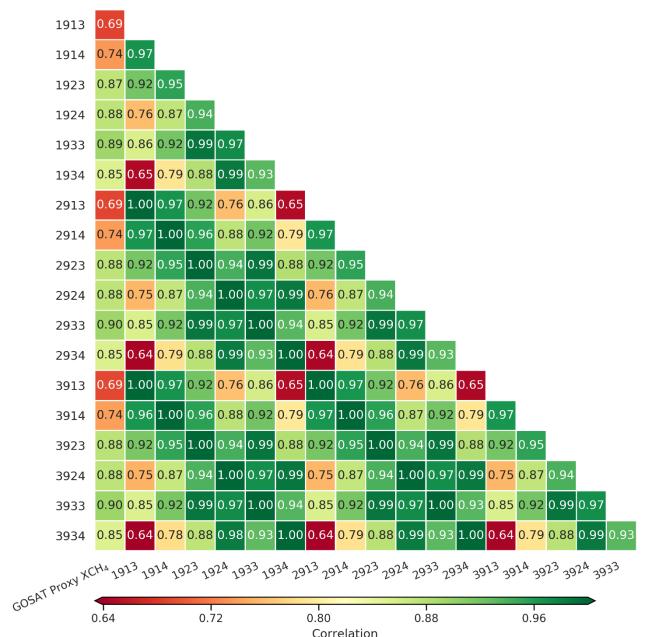

4-digit code describes ensemble member - ABCD

January 2001

Global Correlation Between GOSAT and Different Ensemble Members

- Correlation shows GOSAT vs each ensemble member (left-most column)
- Temperature dependence important
 - Low Q₁₀ (=1, i.e. no dependency) does poorly
- Significant variability in inter-ensemble correlations
- Correlation of ensemble members against each other is useful for determining sensitivity to different constraints
- Very low correlation (0.64) between extreme ensemble members (i.e. when Q₁₀ and extent are most different)

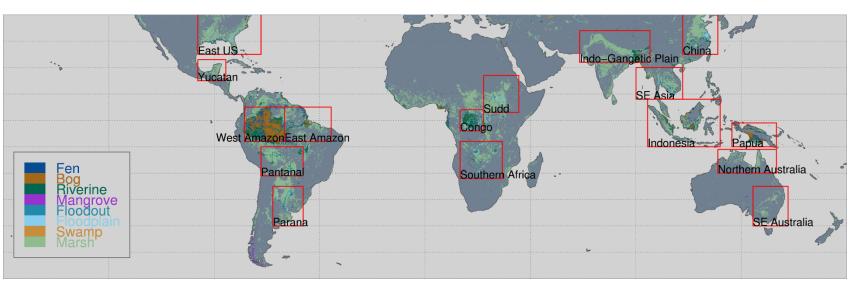
* *

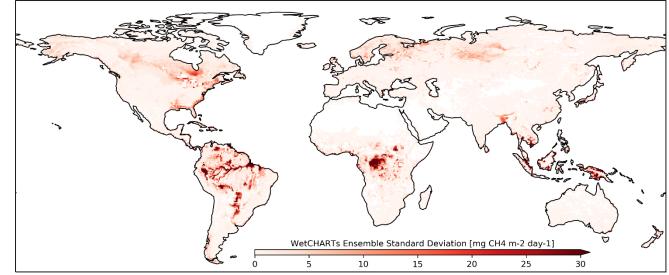

National Centre for

Earth Observation

ATURAL ENVIRONMENT RESEARCH COUNCIL

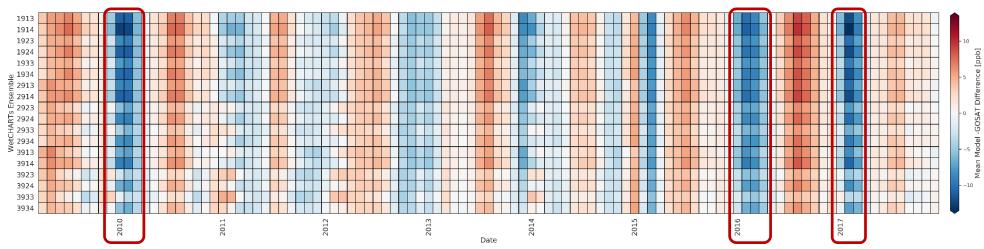
UNIVERSITY OF


LEICESTER

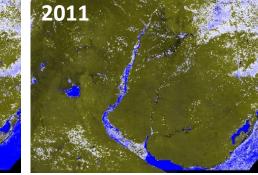


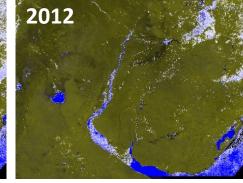
Global Wetland Locations

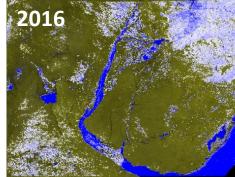
- We choose geographic areas to concentrate on based on a static wetland database (SWAMP)
- The standard deviation of the 18member WetCHARTs ensemble shows (as expected) that many of these regions have a large spread across the ensemble
- The objective is to begin investigating these regions and to diagnose what is driving this variability within the ensemble and to evaluate which members perform best against observations

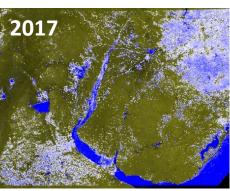


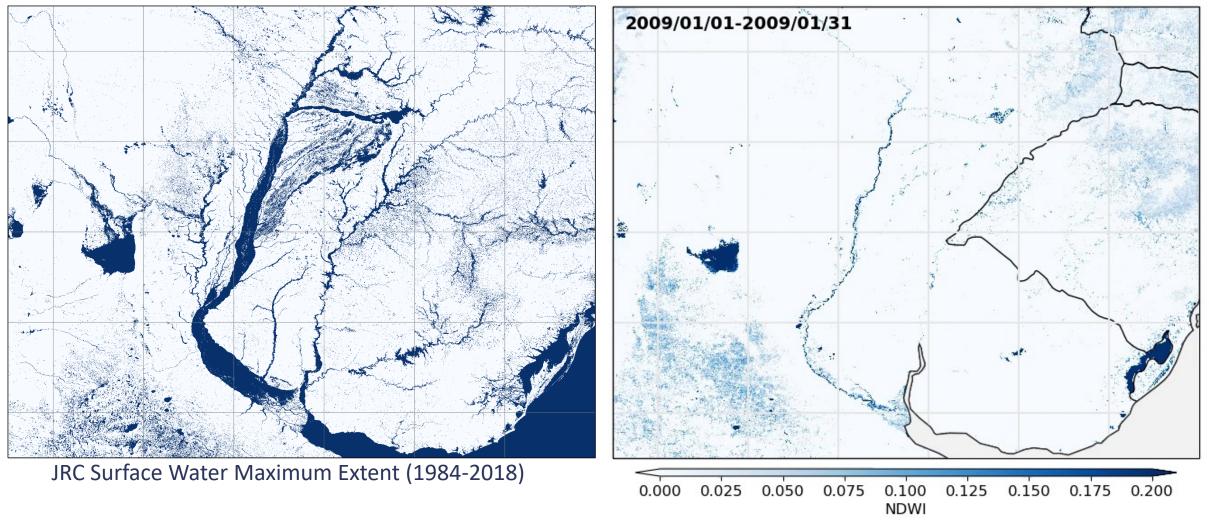



Paraná River


- Previous study (Parker et al., 2018) saw big discrepancy in early 2010 but data stopped in 2015
- Attributed to overbank inundation driven by ENSO
- Can we explain 2016/2017?
- MODIS imagery shows
 very significant
 flooding in 2016
- Behaviour in 2017 is slightly different in the visible but significantly increased wetland extent clearly apparent in NDWI







Paraná River – Surface Water

 \Box Complex seasonal hydrology that drives wetland extent and subsequent CH₄ emissions

Rob Parker | rjp23@le.ac.uk

Wetland Seasonal Cycle Amplitude Difference to Observations

- We compare the wetland seasonal cycle amplitude between the observations and all ensemble members
- Example (right) for Congo shows that majority of ensemble members overestimate the observed seasonal cycle (especially for 2010-2012, 2015-2016)
- Switching between wetland masks can account for almost a doubling of seasonal cycle amplitude
- The distribution of the differences to the observed seasonal cycle are calculated for each region (right)
- Also coloured by the correlation coefficient between the observations and the mean WetCHARTs seasonal cycle

UNIVERSITY OF

LEICES

National Centre for

ATURAL ENVIRONMENT RESEARCH COUNCIL

Observation

	GOSAT Proxy XCH ₄	14	25	18	21	15	16	22	23
Nc	1913	6.1	19	23	15	10	12	16	20
So 61	1914	12	29	39	26	18	15	30	28
0	1923	7.4	21	25	16	11	11	20	25
	1924	14	32	42	30	19	16	36	37
	1933	7.3	20	24	16	9.9	11	20	28
	1934	13	31	41	29	19	16	36	41
	<u>୬</u> 2913	8.2	25	31	19	14	16	22	27
Regions	2913 2914 2914 2923 2923 2924 2924 2933	16	38	52	34	24	20	40	37
Reg	ш s2923	9.9	28	34	22	14	14	27	34
	2924 2	18	42	56	40	26	21	49	50
	a ≥ 2933	9.8	27	33	21	13	14	27	37
	2934	18	42	54	39	25	21	49	54
	3913	10	31	39	24	17	20	27	34
	3914	20	47	65	43	31	25	50	46
	3923	12	34	42	27	18	18	33	42

23

12

22

3924

3933

3934

53

52

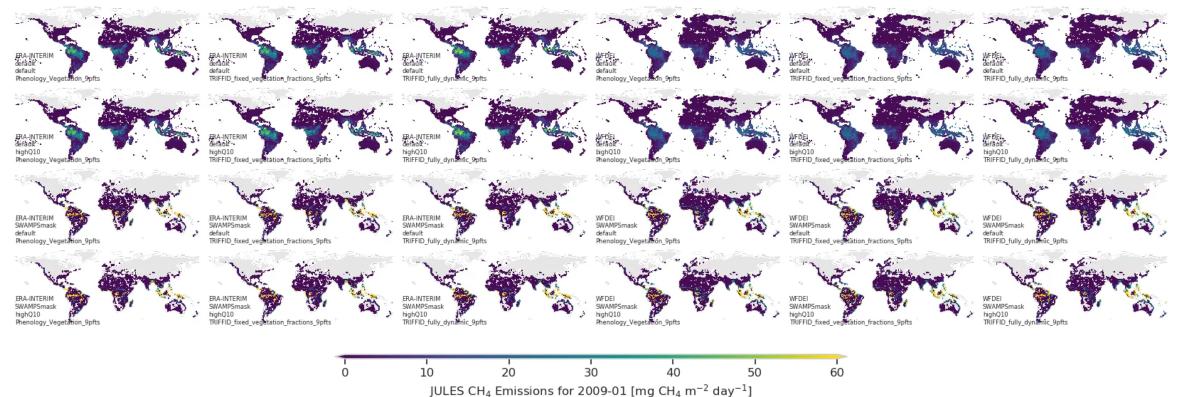
70

68

- 1.0 21 8.9 15 · 60 8.7 - 0.8 16 8.2 Seasonal Cycle 16 Cycle Amplitude [ppb] 12 GOSAT 20 12 ۴ Correlation 21 0.4 30 Son 11 Sea 21 15 - 0.2 24 14 - 15 26 61 62 26 0.0 18 46 14 40 0)b] 27 61 68 27

2009 2010 2011 2012 2013 2014 2015 2016 2017

16


31

26

48

JULES Ensemble

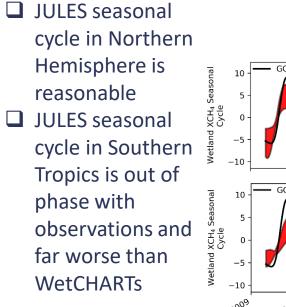
Ensemble of JULES runs provided by Eddy (CEH)

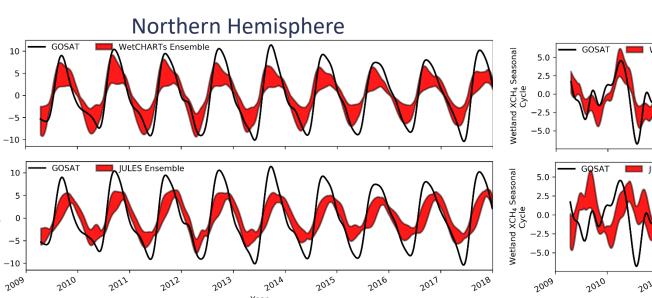
ERA-Interim vs WFDEI met, default vs high Q10, default vs mask extent, phenology vs TRIFFID fixed vs TRIFFID dynamic veg

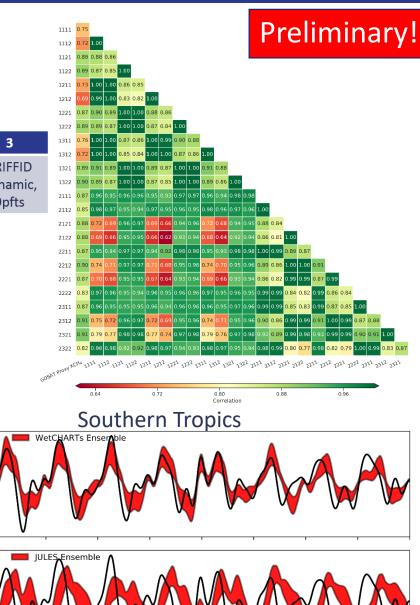
□2 x 2 x 2 x 3 =**24**ensemble members

□ Have now run these emissions through same TOMCAT model as WetCHARTs (huge time and data storage requirements)

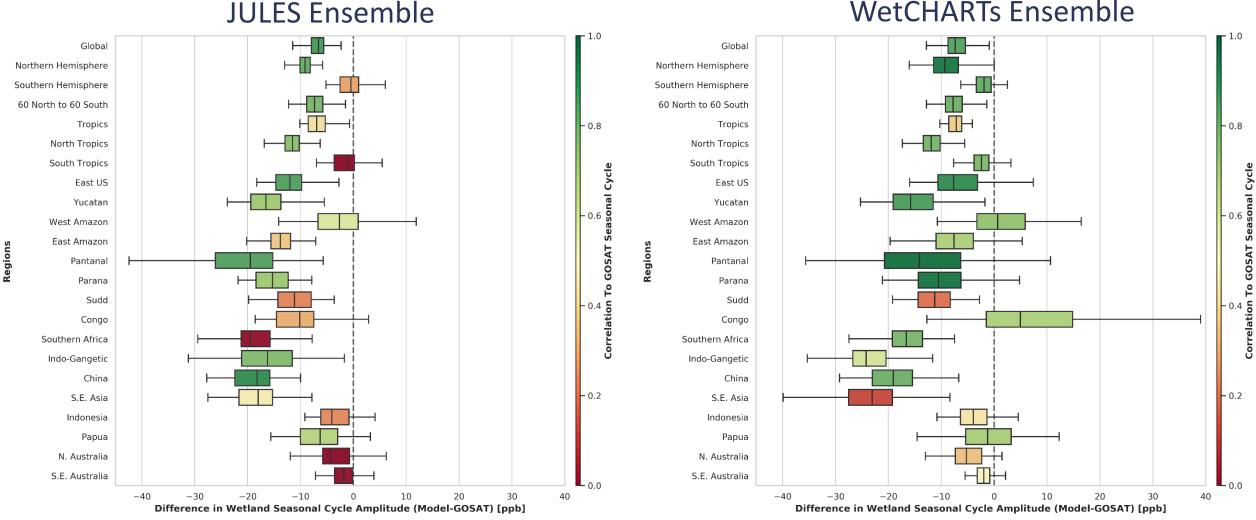
□ Analysis just beginning (as of last week!)






JULES

- Higher temperature dependency performs better for ERA-Interim but less impact for WFDEI
- WFDEI correlates better in general to observations globally
- The different extent masking does not cause large differences on a global scale (it does have a very large effect over some regions though!)


Α	1	2	
Met Driving Data	ERA-Interim	WFDEI	
В	1	2	
Vegetation	Phenology, 9pfts	TRIFFID Fixed, 9pfts	TRI Dyn 9
c	1	2	
Temperature Dependence	q10 = 3.7	q10 = 5.0	
D	1	2	
Extent Parameterisation	JULES	JULES with SWAMPS mask	

Year

Seasonal Cycle Amplitude and Correlation JULES Ensemble

Things of note: Overall pattern similar, Congo spread much reduced in JULES, JULES has much poor correlation in general (especially S. Tropics) BUT better over India/China/S.E. Asia

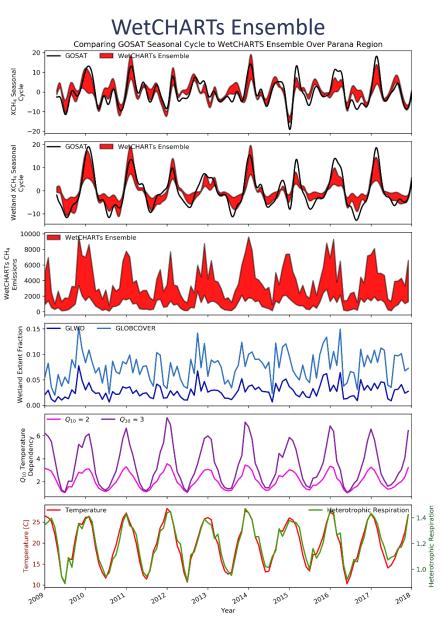
12

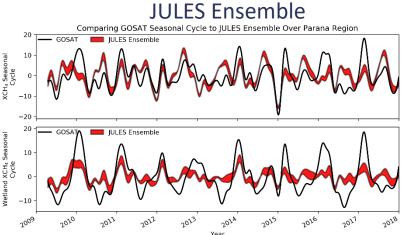
Summary

- □ We now have a really interesting dataset of Global Chemistry Transport model simulations driven by a large ensemble of WetCHARTs and JULES CH₄ emission data
- □ Starting to exploit this dataset by comparing to GOSAT observations to evaluate which factors are **most important in matching the observed CH**₄ **distributions**
- WetCHARTs could be viewed as a very basic data-driven implementation of JULES CH₄ parameterisation and so comparisons of performance against observations vs JULES can be useful
- In general WetCHARTs performs very well, capturing the correct phase and magnitude of wetland CH₄ emissions over many regions
- Ensemble member using highest Q₁₀ value and GLWD wetland masking seems to perform the best against observations globally
- The Paraná river region which we focused on heavily in Parker et al., 2018 continues to be of interest as 2016/2017 show strong anomalies consistent with increased wetland extent
- The wetland mask (GLWD vs GLOBCOVER) makes a big difference to how well the emissions can match observations with GLWD performing much better
- However, WetCHARTs relies on precipitation to drive wetland extent and has no knowledge of hydrology (i.e. input from upstream) and hence even with a good wetland mask it will struggle to reproduce anomalous events (such as those observed in 2010, 2016, 2017) over the Paraná
- □ Extending this analysis to JULES ensemble is just beginning but already some interesting results
- Extension of existing satellite-based surface inundation datasets critical for determining role of inundation in atmospheric CH₄ observations

NEK(

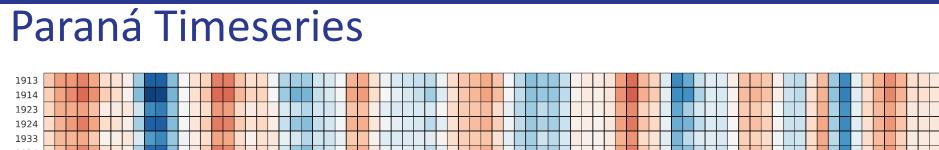
Extra Slides

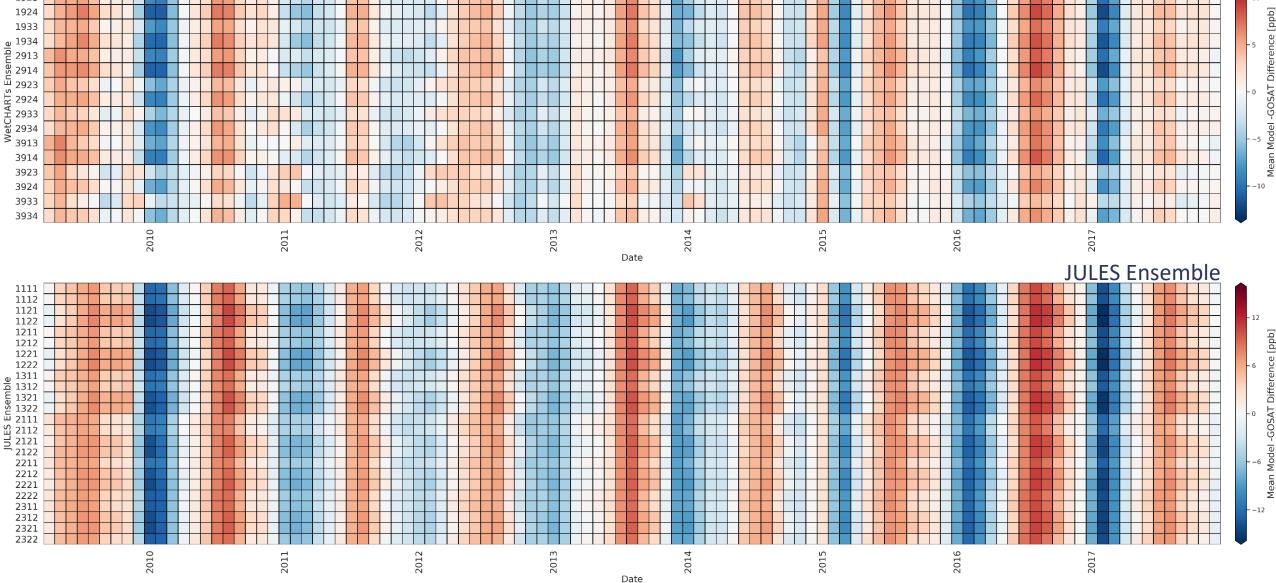

JULES Correlation to Observed Wetland Seasonal Cycle


1111	0.75	0.65	0.25	0.69	0.41	0.57	-0.069	0.71	0.5	0.58	0.32	0.8	0.74	0.19	0.048	0.23	0.83	0.87	0.3	0.21	0.62	-0.36	-0.065		- 1.0
1112	0.72	0.62	0.23	0.63	0.3	0.52	-0.093	0.7	0.47	0.58	0.32	0.78	0.75	0.072	0.0044	0.17	0.79	0.87	0.27	0.16	0.63	-0.38	-0.052		
1121	0.88	0.85	-0.069	0.81	0.42	0.83	-0.43	0.83	0.75	0.4	0.22	0.65	0.46	-0.021	0.39	-0.68	0.62	0.9	0.49	0.24	0.68	-0.52	-0.19		
1122	0.89	0.86	-0.046	0.84	0.49	0.86	-0.41	0.83	0.76	0.4	0.23	0.69	0.47	0.13	0.43	-0.67	0.67	0.89	0.52	0.28	0.68	-0.51	-0.19		
1211	0.73	0.61	0.23	0.63	0.32	0.46	-0.074	0.67	0.43	0.6	0.34	0.8	0.72	0.073	0.038	0.14	0.81	0.86	0.21	0.15	0.61	-0.35	-0.081		- 0.8
1212	0.69	0.57	0.22	0.55	0.2	0.38	-0.097	0.62	0.39	0.59	0.34	0.79	0.72	-0.032	-0.0011	0.072	0.75	0.86	0.17	0.096	0.62	-0.37	-0.067		- 0.8
1221	0.87	0.81	-0.037	0.79	0.4	0.77	-0.39	0.79	0.7	0.43	0.26	0.69	0.47	-0.11	0.38	-0.66	0.58	0.88	0.38	0.18	0.68	-0.5	-0.19		H4
1222	0.89	0.84	-0.016	0.83	0.48	0.81	-0.37	0.82	0.72	0.43	0.27	0.73	0.48	0.012	0.41	-0.65	0.65	0.89	0.44	0.23	0.68	-0.49	-0.19		ر XO
1311	0.76	0.66	0.27	0.7	0.47	0.56	-0.031	0.74	0.47	0.59	0.33	0.84	0.76	0.18	0.05	0.089	0.85	0.87	0.33	0.21	0.62	-0.38	-0.065		Proxy XCH ₄
1312	0.72	0.62	0.26	0.64	0.37	0.5	-0.05	0.73	0.44	0.58	0.33	0.83	0.77	0.079	0.0082	0.04	0.82	0.88	0.32	0.16	0.62	-0.4	-0.044	-	- 0.6 ¥
1321	0.89	0.84	0.0031	0.85	0.52	0.84	-0.35	0.83	0.71	0.43	0.27	0.78	0.54	0.084	0.37	-0.68	0.7	0.9	0.57	0.24	0.68	-0.51	-0.2		- 0.6 GOSAT
1322	0.9	0.86	0.022	0.87	0.59	0.85	-0.33	0.84	0.72	0.43	0.27	0.8	0.54	0.2	0.4	-0.68	0.75	0.89	0.57	0.29	0.68	-0.5	-0.19		ded
2111	0.87	0.82	0.52	0.85	0.55	0.76	0.32	0.9	0.78	0.7	0.48	0.9	0.84	0.42	0.24	0.65	0.8	0.85	0.4	0.35	0.67	0.15	0.21		Detrended
2112	0.85	0.8	0.51	0.81	0.47	0.76	0.3	0.9	0.8	0.69	0.45	0.9	0.84	0.38	0.23	0.62	0.8	0.88	0.44	0.27	0.68	0.15	0.21		Det
2121	0.88	0.93	0.25	0.79	0.37	0.85	-0.086	0.91	0.87	0.56	0.35	0.89	0.7	0.54	0.5	-0.21	0.68	0.9	0.67	0.41	0.71	-0.28	-0.061		- 0.4 C
2122	0.88	0.94	0.3	0.81	0.51	0.87	-0.031	0.9	0.86	0.6	0.45	0.9	0.71	0.61	0.52	-0.087	0.71	0.87	0.62	0.52	0.7	-0.25	-0.016		atio
2211	0.87	0.83	0.51	0.83	0.5	0.73	0.31	0.9	0.79	0.74	0.54	0.91	0.84	0.35	0.19	0.67	0.77	0.85	0.33	0.29	0.68	0.17	0.24		Correlation
2212	0.9	0.93	0.33	0.84	0.6	0.88	0.026	0.89	0.84	0.61	0.43	0.9	0.73	0.5	0.5	-0.14	0.79	0.84	0.58	0.44	0.7	-0.2	-0.025		ő
2221	0.87	0.93	0.32	0.73	0.19	0.83	-0.0036	0.88	0.84	0.54	0.37	0.88	0.7	0.14	0.48	-0.091	0.64	0.89	0.61	0.14	0.61	-0.18	-0.056		- 0.2
2222	0.83	0.79	0.48	0.69	0.075	0.65	0.26	0.88	0.74	0.65	0.4	0.88	0.8	0.083	0.12	0.57	0.75	0.88	0.33	-0.049	0.58	0.26	0.15		0.2
2311	0.87	0.8	0.49	0.78	0.28	0.66	0.26	0.89	0.7	0.6	0.31	0.87	0.79	0.18	0.17	0.51	0.78	0.85	0.38	-0.032	0.55	0.33	0.11		
2312	0.91	0.94	0.38	0.85	0.56	0.88	0.078	0.87	0.81	0.54	0.32	0.89	0.74	0.35	0.5	-0.1	0.8	0.84	0.59	0.19	0.59	-0.084	-0.026		
2321	0.91	0.92	0.33	0.82	0.38	0.88	0.014	0.88	0.82	0.52	0.25	0.87	0.71	0.24	0.49	-0.23	0.76	0.88	0.65	0.089	0.6	-0.13	-0.088		
2322	0.82	0.77	0.47	0.71	0.18	0.65	0.24	0.89	0.72	0.62	0.29	0.87	0.78	0.14	0.21	0.48	0.79	0.88	0.43	-0.085	0.56	0.34	0.1		- 0.0
GI Northern	obal Hemisp Southern	nere Hemisp 60 Nort	n ^{ere} n to 60 Sr	outh Tre	North Tro	opics South Tro	upics Eas	t US YUC	atan Nest Ami	azon East Amé	Pant	a ^{nal} pa	rana c	su ^{dd} Cr	uthern A	irica ndo-Gane	ye ^{tic} C	nina S.E.	Asia Indor	esia pa	N. Aust	ralia S.E. Aust	ralia		

Rob Parker | rjp23@le.ac.uk

Paraná Timeseries


- Some WetCHARTs ensemble members can get close to observed wetland seasonal cycle (albeit still
 - underestimating the strong peaks)
- JULES does a much poorer job here and although it broadly captures the seasonality, the magnitude it far too small



10

WetCHARTs Ensemble