# JULES and the Met Office: Future plans

JULES launch meeting – 2 October 2006

## Met Office activities



## Short-term weather forecasting

- global, NAE and UK models
- Iand surface processes important across all scales
- data assimilation (snow, soil humidity)
- boundary conditions (e.g. surface albedo, roughness length)

## Seasonal forecasting

land surface processes
(soil humidity, vegetation and lakes as slow-varying processes)
initialisation and prediction

## Climate prediction

- HadGEM2 (MOSES 2.2 + TRIFFID + RothC)
- HadGEM3 (link to QUEST-ESM)

## **Met Office activities**





#### Code structure



#### Flexible tile structure

- ➤Currently not enough for Carbon Cycle?
- ➤Currently too many for NWP applications?
- ➤Will be able to set number and definition of tiles

tall and short vegetation, age classes, elevation bands, urban, ...

Sub-surface decoupled from surface exchange
 Sub-surface (soil, sea-ice, ocean, ...) can be on different grid
 Sea-ice and ocean can be owned by ocean groups
 Can easily include new lake model

#### Snow processes



- Heterogeneity
- Multi-layer model
- Include forest canopies
- Elevation bands
- Ponding
- Melting and re-freezing
- Aerosol snow-albedo effect
- Suitable for both land surface and sea-ice



## **Urban** areas



- Identify complexity requirements for urban model intercomparison
- Improved heat and moisture fluxes
- Carbon fluxes

Computationa



Number of Parameters

- Assessments of climate chance in cities
- Include momentum flux and wind distribution within canopy
- Improved turbulence information for dispersion studies

#### Water cycle



- Modelling of river flow and flooding
- Improved treatment of permafrost regions
- Inclusion of wetlands
- Groundwater model
- Human impact on water cycle
  - ➢Irrigation
  - ≻Dams
- Melting of glaciers

## ==> Forthcoming WATCH FP6 project

## **Data Assimilation**





#### Snow

≻Mass

- Soil moisture
  - Combination of direct and indirect

Indirect coming from directly related, not indirectly related!

#### Vegetation

➤Seasonal variation in "greenness".

Phenology model with observations used to nudge model state

#### Brightness temperature

Used to correct surface and sub-surface temperatures

➤Give better first guess for satellite retrievals

## Ancillary information

# Met Office

## High resolution

Higher than model resolution to give heterogeneity information

## Good quality

Need to be validated and compared to other data sources

## Up-to-date

- Should represent current situation
- Data sources that can be updated

## Climate developments (in collaboration)



## Link between surface and chemistry

- Methane emissions
- Ozone impact on vegetationBVOCs
- Nitrogen for both vegetation and soils
- Aerosol emissions from fires
- Dust emissions

## **Terrestrial carbon cycle**

- New Dynamical Global Vegetation Model
- Crop models
- Carbon emissions from fires
- Organic soils



-0.4-0.1-0.010.01 0.1 0.4



## END



## Land surface heterogeneity

#### Tile scheme

- >Appropriate for high horizontal resolution?
- Multiple source tiles?
- Connection to boundary layer
  - Implicitly coupled to first model level
    - Assumes blending height below first model level
  - >Implicitly coupled to a variable model level



