

Does "Amazon die-back" mean it is not worth reducing deforestation?

Richard Betts

With thanks to: Peter Cox, Wolfgang Cramer, Nicola Golding, John Hughes, Chris Jones, Gillian Kay, Neil Kaye, Yadvinder Malhi, Britaldo Soares-Filho,

JULES science meeting, Edinburgh, 8-9 January, 2009

Projected climate change causes "forest die-back" in Hadley Centre model

Simulated broadleaf tree

(fraction of gridbox covered)

0.1 0.3 0.5 0.6 0.7 0.8 0.9

2050-2059

0.1 0.3 0.5 0.6 0.7 0.8 0.9

0.1 0.3 0.5 0.6 0.7 0.8 0.9

0.1 0.3 0.5 0.6 0.7 0.8 0.9

"So if climate change is going to kill the Amazon, why should we reduce deforestation?"

Context: how robust are these predictions?

A1B

DJF

JJA

General agreement on drying in B Amazonia in JJA – but projections vary in magnitude

© Crown copyright Met Office

Malhi et al,

2008

Biases in climate models

Different vegetation models give different rates of die-back Amazon Forest biomass 60 40 GtC 20 Driven by climate change from HadCM2 (!) RIFFID No CO₂ fertilization 1900 1850

1950

2000

Year

2050

Cramer et al (2001)

2100

So what is to be gained by reducing deforestation?

- Case 1: extreme climate change + dieback scenario
- Case 2: intermediate climate change

Case 1: extreme climate change + dieback scenario

- HadCM3LC projections with IS92a emissions and climate-carbon cycle feedbacks
- Vegetation change driven by climate change and CO₂ fertilization
- Compare rate of climate-change driven dieback with projected deforestation under business-asusual (Soares-Filho et al 2006)
- Assess implications for change in vegetation carbon stocks (and hence carbon emissions)

Extreme die-back scenario: still not as fast as direct deforestation

Forest cover change due to HadCM3 climate change (green, yellow, orange) and Soares-Filho *et al* (2006) deforestation

40°W

-10°N

-0°

-10°S

-20°S

-30°S

40[°]W

w Grown copyright inter Onice

Avoiding deforestation delays carbon loss by decades, even under extreme climate change scenario

Case 2: intermediate climate change scenario

- HadCM3 projections with SRES A2 emissions and *NO* climate-carbon cycle feedbacks
- Use 17-member perturbed-physics ensemble
- Consider interactions between climate change and deforestation

Interactions between climate change and deforestation / degradation

Projected increase in fire risk due to climate change

Ensemble of simulations with HadCM3 climate model

Golding and Betts (2008) Glob. Biogeochem. Cycles

Comparison of projected areas of high fire risk and deforestation

Conclusions

- The Hadley Centre climate model famously predicts warming, drying Amazon climate and "Amazon die-back"
- Other climate models project drying, but not as much
- "Die-back" also depends on sensitivity of forest
- Even in extreme climate scenario, direct deforestation leads to forest loss 50 years earlier than climate change
- Climate change may increase risk impact of deforestation through fire leakage
- Reduced deforestation is still beneficial even under climate change buys time and reduces impact of climate change

Fragmentation of forest would increase sensitivity to climate change

Satellite image of new forest edges due to partial deforestation

© Crown copyright Met Office

Laurence (2004)

Projected change in South American forest carbon stores

Intermediate drying scenario: change in fire risk

Golding and Betts (2008)

Overlap between climate changeinduced fire risk and deforestation

- Hadley climate models project reduced precipitation in Amazonia
- This would increase the risk of forest fire
- Deforestation activities are an ignition source
- Climate change may increase the impact of deforestation by increasing the risk of fire leakage

Golding and Betts (2008)

Simulated temperature changes relative to 2000 (°C)

- Some areas warm faster than others
 - Land warms faster than ocean
 - Faster warming near poles
 - Some ocean areas warm faster than others

Simulated precipitation changes relative to 2000 (mm day⁻¹)

- Differing rates of local warming cause changes in atmospheric circulation
- Amazonian rainfall declines due to responses to sea surface temperature changes in Atlantic and Pacific

Different vegetation models given different levels of die-back

Simulated 60°N changes in 30°N tree cover 0° from 1860 to 30°S 2099 in 4 DGVMs

- driven by 90°N HadCM3LC- 60°N based 30°N climate 0° patterns in 30°S IMOGEN

