Towards a universal model for ecosystematmosphere carbon and water exchanges

Iain Colin Prentice*
Han Wang, Will Cornwell, Tyler Davis, Ning Dong, Brad Evans, Trevor Keenan, Yan-Shih Lin, Changhui Peng, Beni Stocker, César Terrer Moreno, Henrique Togashi, Rebecca Thomas, Ian Wright

*AXA Chair Programme in Biosphere and Climate Impacts, Imperial College London

CO_{2} seasonal cycle: models differ, none are right

Graven et al. (2013) Science

R Thomas et al. (in revision) GRL

Why do we need a universal model?

- Current models have too many parameters, and still fail key benchmark tests
- New theory and observations on plants and ecosystems support a different model structure:
fewer (not more!) PFTs
fewer parameters
universal principles
- Simpler models embodying clear hypotheses are more useful for science and prediction

Evolutionary optimality: a basis for theory in ecosystem science

- The "missing law" of biology in Earth System models
- Natural selection is ubiquitous and extremely effective "Nothing in biology makes any sense except in the light of evolution" $-T$.

Dobzhansky

- Explicit hypotheses can be quantitatively tested

Acclimation: bridging time scales

- Variation of parameters over days, weeks and months
- Variation of parameters across environments
- Short-term response $=$ longer-term response (fundamental, and generally ignored)
$>$ example: plant respiration - almost flat response to temperature
$>$ may be the cause of the seasonal cycle problem?
> also applies to photosynthesis

What acclimation is

- Optimization of a phenotypically plastic trait

What acclimation is not

- An effect that goes away (cf. "downregulation" in response to enhanced $\mathrm{CO}_{2}: V_{\text {cmax }}$ declines, $A_{\text {net }}$ increases ...)
- An idiosyncratic effect, making modelling even more complex
> it makes modelling simpler, by predicting universal relationships!

Predictability of the $c_{i}: c_{a}$ ratio (χ)

The "exchange rate" between CO_{2} and water

- Least-cost hypothesis: minimize $a(E / A)+b\left(V_{c m a x} / A\right)$
- This results in:

$$
\chi_{o p t}=\Gamma^{*} / c_{a}+\left(1-\Gamma^{*} / c_{a}\right) \cdot \xi /(\xi+V D)
$$

where:

$$
\begin{aligned}
& \xi=V\left[b\left(K+\Gamma^{*}\right) / 1.6 a\right] \\
& K=K_{C}\left(1+O / K_{0}\right) \\
& a=r_{s} h^{2} \rho_{s} \eta / 2(\Delta \psi) k_{s} \rho_{w}
\end{aligned}
$$

$$
b=\text { constant } \quad \mathrm{H} \text { Wang et al. Nature Plants (in revision) }
$$

bioRxiv http://dx.doi.org/10.1101/040246

In $\chi /(1-\chi)$ versus environmental predictors (from global $\delta^{13} \mathrm{C}$ data: >3500 measurements)

predicted

```
In vpd
elevation (km)
\[
R^{2}=0.39
\]
```

temperature (K)
fitted

$$
\begin{aligned}
0.052 & \pm 0.006 \\
-0.55 & \pm 0.06 \\
-0.11 & \pm 0.03
\end{aligned}
$$

partial residual plots

(note dependence of elevation effect on relative humidity)

A universal relationship

- Plant Functional Types have different $c_{i}: c_{a}$ ratios because they live in different climates.

A universal relationship

- PFTs have different $c_{i}: c_{a}$ ratios because they live in different climates.
- Duh.

Predictability of carbon fixation capacity

The activity of the CO_{2}-fixing enzyme, Rubisco

- Predictions: $V_{c m a x}$ acclimates so as to make use of the available PAR (not less or more)
$>$ increases in proportion to PAR
$>$ increases weakly with temperature; less steeply than enzyme kinetics
$>$ value at standard temperature (e.g. $25^{\circ} \mathrm{C}$) declines with temperature

HF Togashi et al. Functional Plant Ecology (in revision)

Great Western
Woodlands, Australia

traits versus growth temperature

predicted
$\ln V_{c m a x}$
$\ln J_{\text {max }}$
$\ln R_{\text {dark }}$
0.049*
0.033 ± 0.016
0.025 ± 0.011
0.051 ± 0.016
*slope from Rubisco kinetics is 0.089

More (true) predictions

- higher $V_{\text {cmax }}$ (and leaf N) in dry environments
- higher $V_{\text {cmax }}$ (and leaf N) at high elevations
- lower $V_{\text {cmax }}$ (and leaf N) at elevated CO_{2} : 'down-regulation'

Predictability of leaf N content ($\ln N_{\text {area }}$)

predicted
χ (from $\delta^{13} \mathrm{C}$)
In PAR
mean annual T
-0.62
1
-0.048
fitted
-0.61 ± 0.25
0.87 ± 0.10
-0.047 ± 0.007

N Dong et al. Global Ecology and Biogeography (in revision)

N-S Australia transect

partial residual plots

Predictability of the $J_{\max }: V_{c \max }$ ratio

Ratio of investments in electron transport and carboxylation

- $J_{\max }$ has a cost
- That's why the response of J to PAR is not linear
- Prediction based on the Smith formula for J :
$>$ the ratio $J_{\text {max }} / V_{\text {cmax }}$ has an optimum,

$$
\begin{aligned}
& J_{\max }=4 k V_{\text {cmax }} \text { where } \\
& k^{3}=\left(1 / c^{*}\right)\left(c_{i}-\Gamma^{*}\right)\left(c_{i}+2 \Gamma^{*}\right)^{2} /\left(c_{i}+K\right)^{3} \quad \text { and } \\
& c^{*} \approx 0.41(\text { from experimental data })
\end{aligned}
$$

$J_{\max } / V_{c m a x}$ depends on growth temperature

Predictability of GPP

Photosynthesis on a large scale

- A further consequence of the theory:
$>$ GPP is proportional to absorbed PAR (Monteith 1977)
- This is the foundation of LUE models!
- So now we can predict GPP, knowing a / b and c^{*} :
$>$ Need satellite data on green vegetation cover (fAPAR)
$>$ Don't need PFTs, or any PFT-specific functions
$>$ Can predict environmental effects on LUE from first principles (including CO_{2} effects)

The universal GPP model

$$
\begin{aligned}
A_{J} & =\varphi_{0} I_{a b s} m \sqrt{1-\left(\frac{c^{*}}{m}\right)^{\frac{2}{3}}} \quad \text { where } \\
m & =\frac{c_{a}-\Gamma^{*}}{c_{a}+2 \Gamma^{*}+3 \Gamma^{*} \sqrt{\frac{1.6 D \eta^{*}}{\beta\left(K+\Gamma^{*}\right)}}} \text { and } \\
\varphi_{0} & =0.093 \\
c^{*} & =0.41 \\
\beta & =b / a \text { at } 25^{\circ} \mathrm{C}=240
\end{aligned}
$$

Global data-model comparison of monthly GPP

Predictability of CO_{2} effects

Comparison with Ainsworth \& Long (2005) meta-analysis of FACE experiments ($\approx 200 \mathrm{ppm} \mathrm{CO} 2$ enhancement):

	meta-analysis	predicted
LUE	$12.2 \pm 9 \%$	15.2%
WUE	$54.3 \pm 17 \%$	55%
$J_{\text {max }} / V_{\text {cmax }}$	$5.2 \pm 2.8 \%$	9.8%
g_{s}	$-20 \pm 3 \%$	15%

Allocation: from GPP to biomass production

- Maintenance of functional and stoichiometric balance \neq fixed allocation fractions
- Key to C-N cycle coupling: optimal allocation

Components of SOFUN

B. Stocker et al., unpublished

Stoichiometric balance

SwissFACE (Lüscher et al, 2004 GCB)

- temperate grassland
- factorial $\mathrm{CO}_{2} \times \mathrm{N}$-fertilization experiment
- modelled with daily climate and CO_{2}, actual N -fertilization and harvest
- no parameter tuning to fit the results

Swiss FACE: harvested biomass

Swiss FACE: LAI

year

Swiss FACE: root mass

Why do some N -limited ecosystems respond/ not respond to enhanced CO_{2} ?

It's the mycorrhizae, stupid!

It's the mycorrhizae, stupid!

Terrer et al. (2016) Science

Conclusions

- GPP can be predicted from fAPAR with a single, universal equation.
- $E=1.6 g_{s} D$, where $g_{s}=\left(A / c_{a}\right) /(1-\chi) \ldots$
$>$ transpiration is predictable in the same way.
- CO_{2} effects can be predicted with the same equation.
- The next big challege is to 'close the loop' between GPP and fAPAR, requiring a comprehensive treatment of allocation.

