Groundwater flow in the JULES LSM – an update

9th September 2020

Collins S, Scheidegger J, Martinez de la Torres A and Hughes A

UK Centre for Ecology & Hydrology

An equation: 2D unconfined groundwater

$$K\frac{\delta}{\delta x}\left(h\frac{\delta h}{\delta x}\right) + K\frac{\delta}{\delta y}\left(h\frac{\delta h}{\delta y}\right) = S_y\frac{\delta h}{\delta t}$$

Challenges:

K – Hydraulic conductivity (L/T) S_y – Specific yield (-) q – Boundary flux (L/T)

Global groundwater modelling – challenges

Compared to Land Surface and Climate models: physics of groundwater flow is a (mostly) lot simpler, but...

...Challenges do exist:

Complexity, lack of data and resulting uncertainty

- Complexity: 3D nature of the sub-surface aquifers are not laterally connected necessarily
- Data availability: low density of boreholes, particularly globally
- Uncertainty wrt parametrisation: driven by lack of confidence in geological structure and rock mass properties

JULES-DGW – saturated–unsaturated zone

coupling

Water table below soil layers

From Niu et al. (2007), analogous to Batelis et al. (2020)

Water table within soil layers

JULES-DGW – saturated–unsaturated zone

coupling

JULES-DGW – lateral flow and rivers

Lateral flow and interaction with rivers is the same as in LeafHydro

Lateral flow between neighbours occurs on a octagonal grid

Head-dependent flux to/from rivers (as in Fan et al 2007, Miguez-Macho et al 2007) Gaining stream

Losing stream

JULES-DGW – hydraulic conductivity

Aquifer hydraulic conductivity can either...

decrease exponentially with depth (as in LeafHydro)

or remain constant with depth (as in most groundwater models)

Ζ

JULES-DGW – abstraction

Code changes – new (and edited) modules

Code changes – new inputs and outputs

Example 1: Infiltration test

Working with colleagues at University of

Bristol. Examples published in Kollet et al

(2016), Rahman (2019), Batelis et al (2020)

Working with colleagues at

University of Bristol. Examples

published in Kollet et al (2016),

Rahman (2019), Batelis et al

(2020)

V-shaped valley test: sandy soil outlet discharge

(Benchmarks all use van Genuchten, JULES-DGW Brooks Corey)

Finish validation and combine code with data....

Ksl to back-calculate the anisotropy ratio

e-folding depth

Groundwater flow in the JULES LSM – an update

9th September 2020

Collins S, Scheidegger J, Martinez de la Torres A and Hughes A

UK Centre for Ecology & Hydrology

