

Evaluation of regional simulations of snow cover over the Austrian Alps

¹NERC Centre for Ecology and Hydrology, Wallingford, UK ²Technical University, Wien, Austria

Motivation

Using JULES together with CEH Grid-to-Grid flow routing algorithm to calculate river flows at continental scale

To model snowmelt-related flows in alpine catchments, it is critical to get snow cover correct

Here, we evaluate the performance of JULES snow model using observed data from Austria over the period 1975-2002

Hydrology in JULES

•JULES takes temperature, wind speed, humidity, LW & SW radiation and precipitation from RCM.

•Compute **evapotranspiration**, taking account of soil properties derived from IGBP soils data; dynamically account for **stomatal resistance**

•Broadband **albedo** diagnostic function of surface temperature

•Surface **energy balance** for composite of snow and snow-free surfaces

•Constant snow density (250 kg/m³)

•Diagnose state of **soil moisture** by using a Pareto distribution of soil moisture store sizes

Convert to surface and subsurface flow

Flow routing scheme for NW Europe

Danube at Kienstock

- Model results (red line) for Danube compare well with observed river flow data (black)
- Better representation of snowmelt runoff may improve model
 performance in spring melt season

Austrian Precipitation Gauging Network

776 stations

Snow cover, snow depth, and snow water equivalent measured daily between 1975-2002

Example results from catchment-based snow-melt model

Rainfall-runoff model with threshold air temperature used for snow accumulation and degree-days used for snowmelt

Locations of climate stations and JULES gridpoints

Topography of Austria and location of climate stations with daily snow depth observations (crosses) and centers of JULES gridpoints (circles).

Duration of snow cover (%) in the period 1975-2002

Accuracy index = $(A + D) \cdot 100 / (A + B + C + D)$

Median and 25-75% percentiles estimated over 776 climate stations in the period 1975-2002.

Accuracy index = $(A + D) \cdot 100 / (A + B + C + D)$

Median and 25-75% percentiles estimated over 776 climate stations in the period 1975-2002.

Accuracy of Snow Cover Simulations: Seasonal Variability

DEC-FEB

MAR-MAY

JUN-AUG

Spatial Variability in the Accuracy of Snowmelt Simulations

Spatial variability of the correlation coefficient between modelled snow water equivalent and observed snow depth in the period 1975-2002

Accuracy is greatest in high-mountain regions and on NW flank of mountain range;poorest model performance in SE quadrant

Annual Variability in the Accuracy of Snowmelt Simulations

Annual variation of the correlation coefficient between JULES snow mass simulations and ground based snow depth data.

Future work: Frequency distribution of snowfall

Mean temperature increased by ~1 degree; mean snow rate decreased by ~50 mm/year

But: extreme snowfall has increased by ~25 percent in frontal-dominated W. Alps.

Question: NAO or climate change?

Conclusions

• JULES predicts snow-cover days with average accuracy of 89% (DJF: 75%, MAM: 86%; JJA: 100%; SON: 94%).

•The model reproduces the spatial pattern of snow cover well in the Alps.

•We are investigating ways to improve the model's representation of subgrid-scale hydrological processes.

Further Work

- •Use of JULES 2.x and later versions of snow code.
- •Explicit resolution of the way in which snow is distributed with elevation.
- •Analysis of sensitivity to temperature threshold for snow accumulation.
- •To investigate trends in observed data, especially statistics of extremes, and comparison with JULES.
- •Scenarios for climate change: using JULES to project effects of climate change on snow cover and hydrology in the Alps.