

Implementation and Evaluation of a Biogenic Isoprene Emissions scheme in JULES

Federica Pacifico^(1, 2, 3), Sandy Harrison⁽⁴⁾, Chris Jones⁽³⁾,

Stephen Sitch⁽¹⁾, Gerd Folberth⁽³⁾

- (1) University of Exeter, UK
- (2) University of Bristol, UK
- (3) Met Office Hadley Centre, Exeter, UK
- (4) Macquarie University, Australia

- Subject of Study
- Model Description
- Model Evaluation
- Model Applications
- Conclusions

Model Description

Pacifico et al., 2011 ACP

This model is based on Arneth et al., 2007 and Niinemets et al., 1999

$$I = IEF \frac{A_{canopy} + R_{Dcanopy}}{A_{st} + R_{D_{st}}} f_T \cdot f_{CO_2}$$

I Above-canopy isoprene emission

IEF Isoprene Emission Factor, i.e. basal isoprene emission at the leaf level in standard conditions. This factor is Plant Functional Type-dependent in JULES.

*A*_{canopy} Net photosynthesis rate at the canopy level

R_{Dcanopy}

Respiration rate at the canopy level

 f_{τ} This empirical factor takes into account the fact that although isoprene is produced in the chloroplast from precursors formed during photosynthesis, there are differences in the short-term response of carbon assimilation and isoprene emission, such as the higher temperature optimum of isoprene synthase.

 f_{CO2} This empirical factor models the inhibition of isoprene emission with increasing atmospheric CO₂ concentration, and vice versa the increase of isoprene emissions with decreasing atmospheric CO₂ concentration. It is relevant for past and future estimates of isoprene emissions.

-st indicates standard conditions, i.e. temperature T_{st} of 30°C, photosynthetically active radiation of 1000µmol/m²/s and CO₂ atmospheric concentration of 370 ppm.

Model Evaluation

Pacifico et al., 2011 ACP

Jun

Comparison with satellitederived isoprene estimates over south America and east and south Asia

TY OF

Model Applications

UNIVERSITY OF

ER

Pacifico et al., 2012 JGR

	lsoprene Emissions (TgC/yr)	GPP (PgC/yr)	CO ₂ (ppm)	Air Temperature (°C)
Present-day 2000-2009	460	146	368	14.1
Pre-Industrial 1860-1869	579	119	286	13.4
Future (RCP 8.5) 2100-2109	456	239	936	18.8
Future (RCP 2.6) 2100-2109	461	162	421	15.4

gC/m²/yr

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

-12

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Model Applications

UNIVERSITY OF

ER

Pacifico et al., 2012 JGR

20% decrease in isoprene emissions	Ozone burden	Methane Lifetime
Under Pre- Industrial (1860-1869) conditions	+ 0.7 Tg + 0.2%	- 9 months - 80 ppb - 44 mW/m²
Under Present-day (2000-2009) conditions	- 2 Tg - 2%	- 3 months - 59 ppb - 22 mW/m²

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

 Scheme available to study Biogenic Isoprene Emissions at different locations/historical periods

 Modifying the Photosynthesis Scheme will affect the isoprene scheme, e.g. direct/diffuse radiation (can_rad_mod 5)

 Possible Improvements: phenology; make the isoprene scheme more process-based, less empirical; evaluation against newly available data

Thanks

