

G Hayman¹, F Centoni¹, E Nemitz¹, D Stevenson² UK Dry Deposition Working Group (O Wild³, G Folberth⁴ and F O'Connor⁴)

¹ Centre for Ecology and Hydrology

JULES Science Meeting, Lancaster 29th June 2016

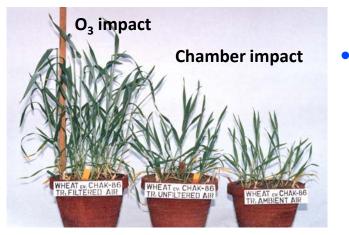
Content and Acknowledgements

Content

- 1. Atmospheric Deposition: Background
- 2. Atmospheric Deposition in the UKCA
- 3. Future directions

Acknowledgements

- David Stevenson
- Catherine Hardacre
- Oliver Wild
- ACITES Dry Deposition Working Group

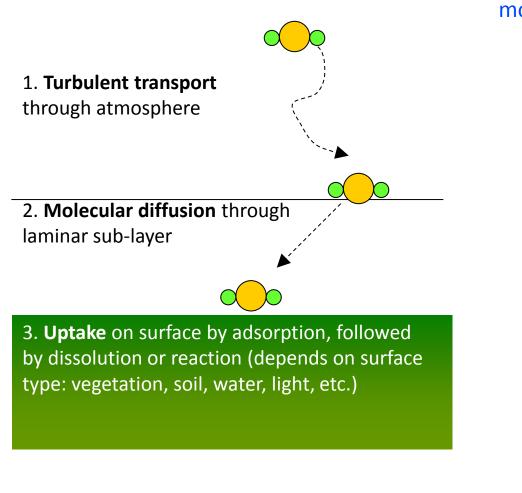


Relevance of Atmospheric Deposition

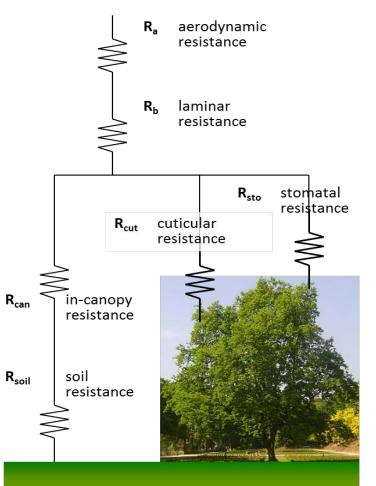
- Important atmospheric process
 - Governs atmospheric abundance of many compounds $(e.g., O_3, H_2O_2, HNO_3, SO_2, NH_3, aerosol, ...)$
- Important process for the biosphere
 - Governs input of key nutrients/oxidants to vegetation
- Links atmosphere and biosphere
 - *Contributes to climate and Earth system feedbacks*

UK map of modelled NH₃ concentrations for 2003 showing exceedance of critical levels for sensitive bryophyte and lichen in 69% of the 1-km grid squares

O₃ injury to wheat, Pakistan (courtesy of A. Wahid)

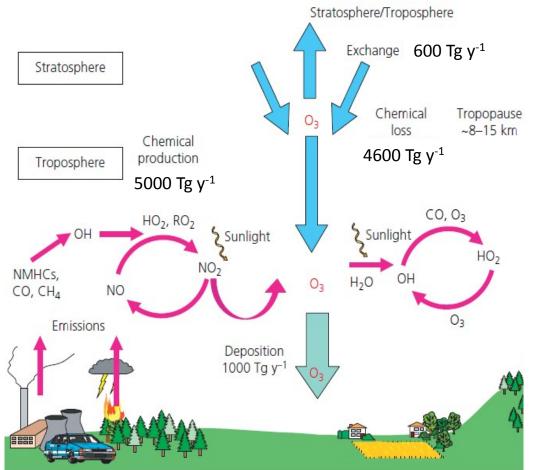


Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL


- Policy-relevant implications for air quality, crop yields, etc.
 - Critical loads for acid deposition and eutrophication
 - Ozone exposure and effects on human health and vegetation
 - Particulate matter (aerosol) and impact on human health

Modelling dry deposition processes

Most atmospheric chemical transport models use a "Wesely-resistance" approach



Following slides focus on ozone but generally applicable

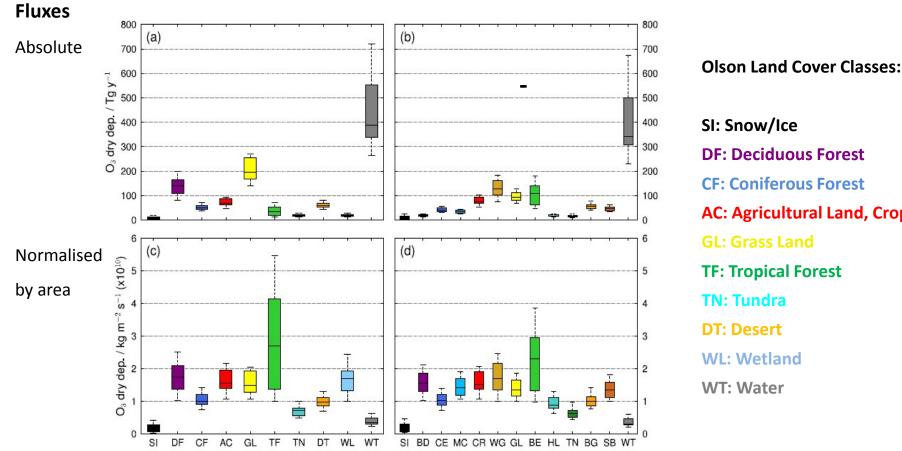
4

Deposition: major contributor to uncertainty in global O₃ budget

Dry deposition is one of the main source of intermodel variability in surface O_3 predictions

Model	Deposition Scheme ^a	Land Cover Classes ^b	Annual global O_3 deposition / Tg yr ⁻¹
CAMCHEM-3311m13	Wesely	17	861
CAMCHEM-3514	Wesely	17	818
CHASER-v03	Wesely		939
FRSGC/UCI-v01	Wesely	9	943
GEMAQ-EC	Wesely	15	878
GEOSChem-v07	Wesely	11	913
GISS-PUCCINI-modelA	Wesely	8	975
GISS-PUCCINI-modelEaer	Wesely	8	1112
GISS-PUCCINI-modelE	Wesely	8	1179
GMI-v02f	Wesely		819
INCA-vSSz	Wesely	11	1256
LLNL-IMPACT-T5a	Wesely	13	1000
MOZARTGFDL-v2	Wesely	11	997
STOC-HadAM3-v01	Wesely	9	1095
STOCHEM-v02	Wesely	9	834
TM5-JRC-cy2-ipcc-v1	Wesely	4	844
ULAQ-v02	Prescribed ^c		1116
UM-CAM-v01	Prescribed ^c	5	1023
Average $(\pm 1\sigma)$			978 ± 127
Average seasonal amplitude ^d			38 ± 8
Average monthly range ^e			38 ± 6

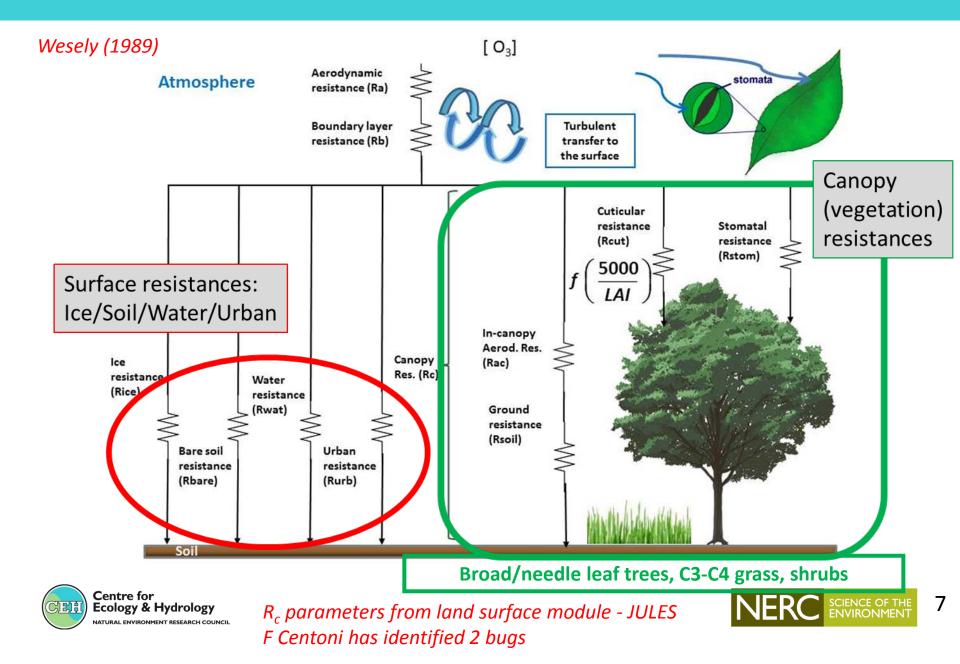
Stevenson et al 2006; Royal Society, 2008

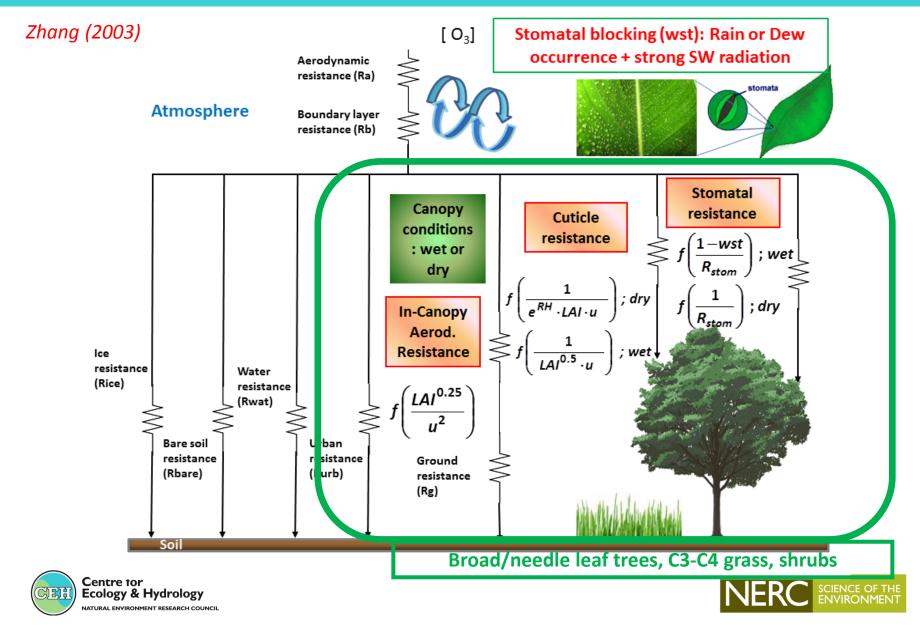

Burden: 340 Tg Lifetime: 22 days

Hardacre et al. 2015

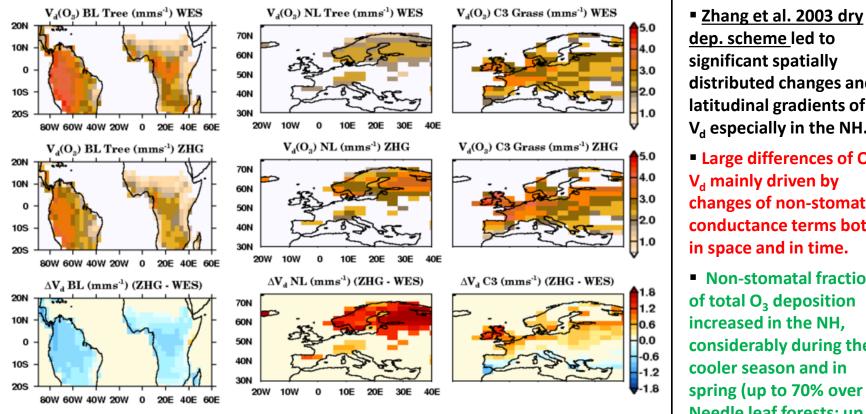
O₃ deposition to different land-cover types

DF: Deciduous Forest CF: Coniferous Forest AC: Agricultural Land, Crops TF: Tropical Forest


Figure 4. Normalised O₃ dry deposition partitioned to land cover classes using the OW11 (a, c) and GCLF (b, d) LCCs respectively. Upper panels show the contribution of each LCC to the annual global O₃ dry deposition flux, and lower panels show the average flux to each LCC. The box and whiskers for each land class represent the median, guartiles and 10th/90th percentiles.


Analysis of HTAP model runs (Hardacre et al., 2015)

UKCA Dry Deposition Schemes

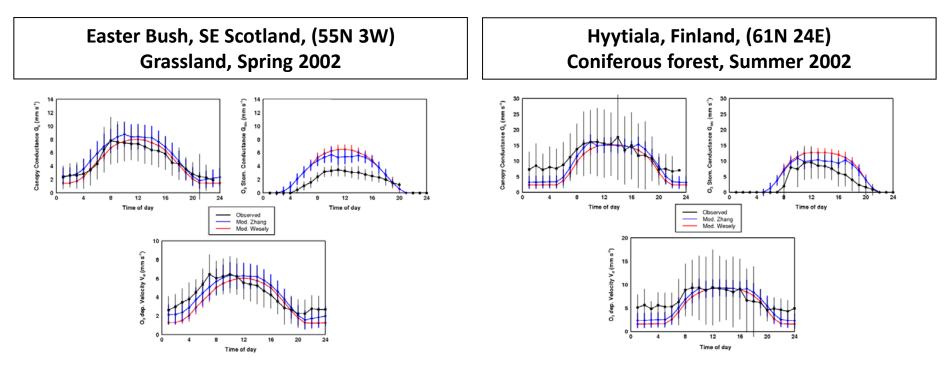


UKCA Dry Deposition Schemes

8

An alternative non-stomatal deposition approach in UM-UKCA model: effects on O₃ deposition velocity

"Revising ozone dry deposition in the UKCA model and implementing an alternative nonstomatal deposition approach", Centoni F., Stevenson D., Fowler D., et al. 2016a, in prep.


dep. scheme led to significant spatially distributed changes and latitudinal gradients of O₃ V_d especially in the NH.

Large differences of O₃ V_d mainly driven by changes of non-stomatal conductance terms both in space and in time.

Non-stomatal fraction of total O₂ deposition increased in the NH, considerably during the cooler season and in spring (up to 70% over Needle leaf forests; up to 60% over C3 grass).

Evaluating O_3 deposition velocity in the UKCA model: preliminary results

• Good ability to capture diurnal variation at selected sites

"Evaluation of ozone dry deposition velocity terms in the UM-UKCA model", Centoni F., Fowler D., Nemitz E., Stevenson D. et al. 2016b, in prep.

• Less good where plants experience water stress (e.g., in the Mediterranean basin)

UKCA Dry Deposition

Model Name	Formula
O3	O ₃
NO	NO
NO2	NO_2
NO3	NO_3
N2O5	N_2O_5
HONO2	HNO ₃
HONO	HONO
ISON	
H2SO4	H_2SO_4
H2O2	H_2O_2
H2	H_2
CH3OOH	CH ₃ OOH
HACET	
ROOH	Other organic peroxides
PAN 7	
PPAN	 Peroxy Acetyl Nitrates
MPAN J	
CO	CO
CH4	CH_4
NH3	$\rm NH_3$
SO2	SO_2
DMSO	
MSA	
OnitU	
SEC_ORG	Any other secondary organics
ORGNIT	Organic nitrogen

- Different approaches for gas-phase and aerosol components
- <u>Gas-phase species</u>: Use resistance approach (Wesely/Zhang)
- <u>Aerosol species:</u> Use roughness length to infer a surface type and then use a prescribed velocity

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Motivation:

- Growing evidence that a lot of chemistry happens within and near canopies large gradients in concentration, radiation, T, RH
- Subgrid process, not treated by current single-layer approaches
 - Exception: global modelling of NO-NO₂-O₃ chemistry in canopies by Ganzeveld et al. in two-layer approach

Approach:

- ÉCLAIRE is developing a new multi-layer exchange/transport/chemistry module (ESX)
- Complex 1-D stand-alone model (many layers; different chemistry schemes; explicity/parameterised leaf surface chemistry; different in-canopy transport schemes; compensation points)
- Designed to be modular, simplifiable and consistent with EMEP CTM
- Simplify as much as required for CTM (ESM?), verified against complex model in off-line mode (off-line tests required to establish minimum number of layers etc.)
- Use the stand-alone model to re-analyse/assimilate field flux data with multi-layer concept
- Community model; freely available; backed by international community (see workshop background documents at <u>https://colloque.inra.fr/cost_eclaire</u>)

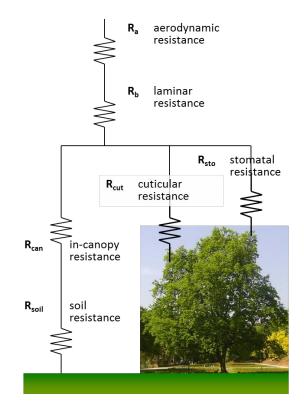
Future Developments

Science

- Sensitivity to stomatal vs non-stomatal partitioning (and effects on crops/radiative forcing)
- Behaviour during extreme events (e.g. heatwaves)
- Implications for past as well as future trends

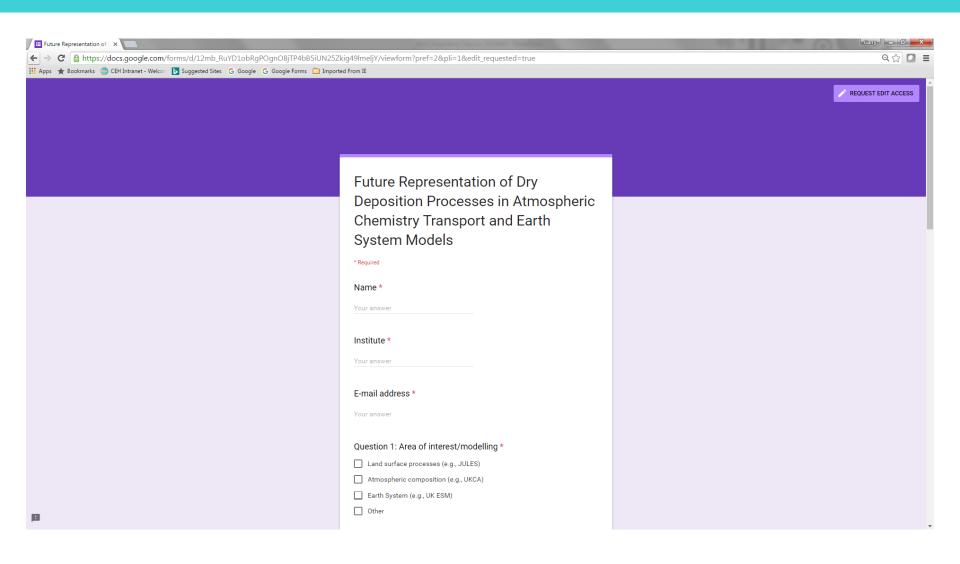
Considerations

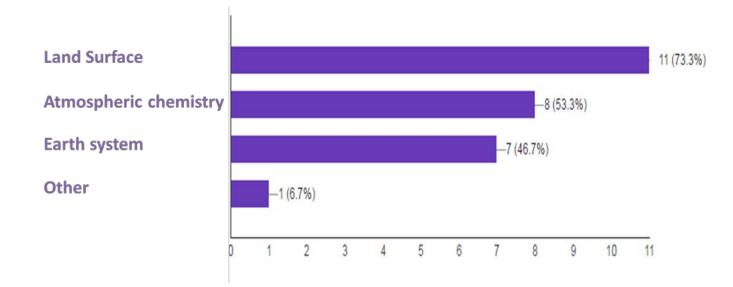
- Need/desire to update dry-deposition scheme in UKCA
- Consistent treatment of gas and aerosol species
- Consistency between UKCA and JULES, e.g., as more pft's added to JULES
- Should JULES provide deposition parameters (e.g., r_c) as current or calculate deposition velocities (pft/species dependent) or mass fluxes (requires species concentrations)?
- With addition of N-cycle, JULES will increasingly require atmospheric 'deposition' inputs
- Extension to other species exchange rather than uptake
- Single or multi-layer schemes (for UKCA deposition, in-canopy chemistry)
- Implications for development of 'offline' version of UKCA



Dry Deposition: Future Developments

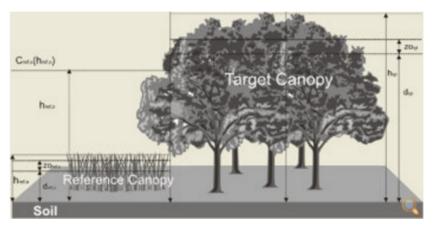
- Dry deposition working group formed as part of the NERC ACITES* project
- Informal meetings held at JULES (2013) and ACITES (2014, 2015) events
- New members welcome
- Subgroup created to consider future ESM developments:
 - G Hayman, E Nemitz (CEH)
 - O Wild (U. Lancaster)
 - G Folberth, F O'Connor, A Hewitt, A Wilshire, J Mulcahy (Met Office)
 - L Emberson (SEI, York)
 - D Stevenson (U. Edinburgh)
 - L Abraham (U. Cambridge)


(*) ACITES = Atmospheric Chemistry in the Earth System <u>https://www.ncas.ac.uk/index.php/en/acites-news</u>


Community Consultation: https://goo.gl/vfQuFU

Consultation: Key points

- Deposition module needed in the UKCA for input to oceans (in ESM) and for 'offline' version
- General agreement that land-related aspects should be in JULES
- Flexibility needed to include new chemical species and plant functional types
- Lack of relevant observational data for model development and evaluation; more data needed from tropical regions (with link to O₃ vegetation damage)
- Longer term, move away from 'big leaf' approach to canopy exchange modelling (with implications for full multi-layer treatment)



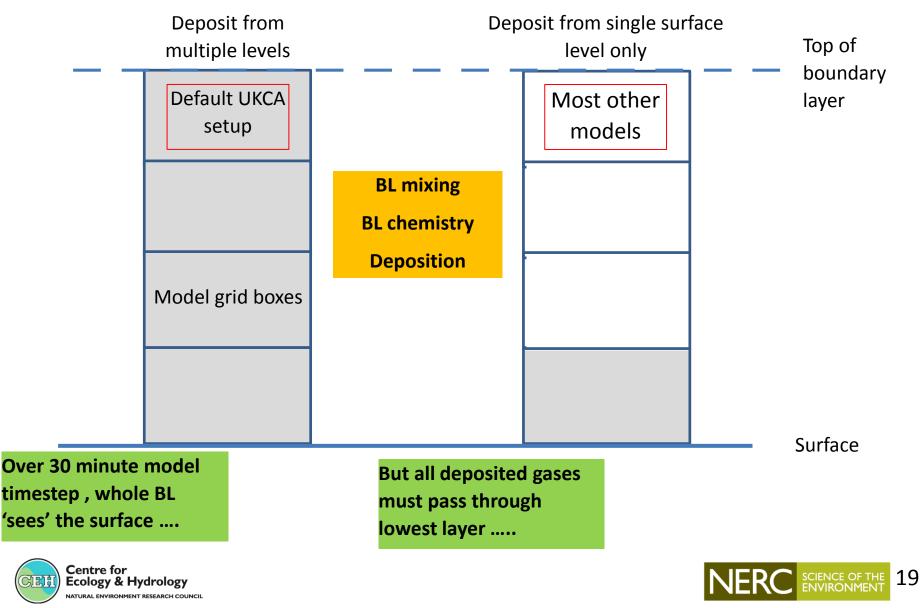
Code development

- As part of the new UK ESM LTSM project, CEH will develop and test an offline deposition module:
 - Include current UKCA deposition schemes (9 and 13-tile versions)
 - Include scheme used in the EMEP CTM; considered to represent the current state-of-knowledge.
- Compare stomatal conductance with the Deposition of Ozone for Stomatal Exchange (DO3SE) model.

DO3SE: Deposition of Ozone for Stomatal Exchange

DO3SE (Deposition of Ozone for Stomatal Exchange) is a dry deposition model designed to estimate the total and stomatal deposition (or flux) of ozone (O_3) to selected European land-cover types and plant species.

https://www.sei-international.org/do3se


iLEAPS (Integrated Land Ecosystem Atmospheric Processes Study)

- Future Earth core project
- Canopy Exchange model intercomparison (CANEXMIP)
- Science Conference (Oxford, 2017)

Modelling dry deposition: How do we formulate models?

Both sorts of schemes implemented in UKCA model