

Fire in JULES- first steps

Dr Richard Gilham, Met Office

richard.gilham@metoffice.gov.uk

- Introduction
- Anatomy of some fire models
- JULES Implementation
- Initial Results
- Conclusions & Future Work

Introduction

(and confessions of a metrologist)

Wildfire: The motivation slide

Atmosphere:

- •Temperature
- •Humidity
- •Wind
- Precipitation
- •Lightning

Humans:

•Ignitions

Land Surface:

- •Veg cover
- •Veg moisture

Atmosphere: •Gas & aerosol •Energy Humans: •Food •Air Quality •Financial •Quality of Life •Other impacts

Land Surface:

•Veg cover

I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science, whatever the matter may be.

Lord Kelvin, 1883

Anatomy of some fire models

$$FFDI = 1.275D^{0.987}e^{\frac{T_{\text{max}}}{29.5858} - \frac{H_{\text{min}}}{28.9855} + \frac{W_{ave}}{42.735}}$$
$$D = \frac{0.191(I+104)(N+1)^{1.5}}{3.52(N+1)^{1.5} + R - 1}$$

-Drought factor modified by $T_{(max)},\,\% RH_{(min)}$ and average wind speed

•Accumulation of drought considers *N* days since *R* amount of rain with a soil moisture deficit *I* (in top ~80 cm)

$$N = \begin{cases} N_0 + ((T - D) \times T), & P < P_t \\ 0, & P \ge P_t \end{cases}$$

- Accumulates until daily precip > 3 mm, then resets to zero
- Daily increment depends on daily mean dewpoint and temperature

- Builds on Nesterov index
- Process-based model
- Close links to vegetation scheme in LSM

doi:10.5194/bg-7-1991-2010

JULES Implementation

Initial Results

- 42 fluxnet sites (PALS sites)
 - 2 examples for now
- JULES at version UM8.4 (ie v3.2 & a bit)

• Plot raw index and risk phrase categories (eg Low, Moderate, High etc)

Seasonal cycle OK
2003- interesting details
Spring peak
Max values

Seasonal cycle OK

- •2003- interesting details
 - •Spring peak
 - •Max values

- •Seasonal cycle OK
- •2005- divergence between all 3 indices

- Grossly similar behaviour between indices
- Many differences in the detail
 - Sensitivity to specific conditions?
 - Case studies needed
- Point runs too short to build climatologies

- 0.5deg, 30 year dataset
- JULES v3.2 fire branch
- No TRIFFID

- Mask out all gridboxes > 50% soil
- Shade according to risk phrases
 - Colouration similar, but not identical

Mcarthur forest fire danger index monthly mean jan, 1979 to 2008

- All 3 models show similar gross patterns
 - Any show-stopping differences for climate studies?
- Several interesting high-risk areas
 - Sahel, Australia, Amazon, sub-Saharan Africa, USA, Mediterranean Europe & Africa

- Difficult to compare different arbitrary scales
 - Linear? Co-linear?!
- Indices generally agree on climate timescales
 - Exact model choice not critical for CR?
- Indices differ in day-to-day site-specific details
 - Care needed for NWP
- Structure in place for more models & development

- Get risk models operational in UM
- Comparison/validation
 - Operationally
 - Climate research
- SPITFIRE

Questions and answers

richard.gilham@metoffice.gov.uk

+44 (0)1392 884516