

50 Shades of Clay- JULES gets Soil Tiled

Richard Gilham, Heather Ashton, Martin Best

JULES Conference, Leicester July 2014

Contents

- Sub-grid heterogeneity (generally)
- Introducing soil tiling
- Examples
- Excuses
- Conclusions

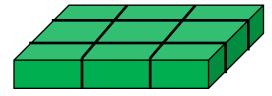
Resolution dilemma

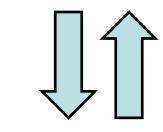
- Higher resolution models [generally] give better results...
- ...but driving data is expensive...
 - Disk space: 0.5deg WFDEI = 8.5 GB/year
 - Computationally: GCM and weather forecast resolutions (UKV = 1.5 km)
- ...but ancillary data is available at very high (<100 m) resolutions
- What do we do?!

Surface Tiles in JULES

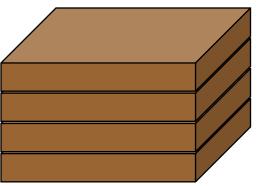
- Same driving data applied to several surface types
 - Use tiled values directly for analysis
 - Pass back a grid-box mean to the atmosphere
- Compromise between driving data expense and ancillary resolution
- "Vanilla" JULES currently (vn 3.4.1) uses 9 surface tiles:
 - 5 vegetated tiles + 4 non-vegetated
 - Others waiting in the wings

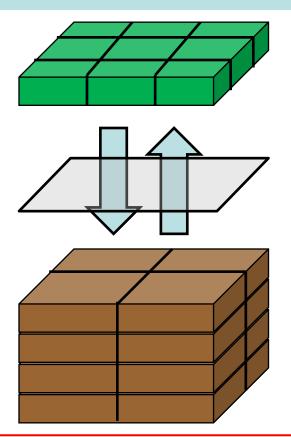
Soil in JULES


- Each grid box is a single soil column
- All surface types share the same soil
- Average soil properties cannot be used
 - Linear combinations are not necessarily physically meaningful
- Dominant soil type is usually chosen
 - Pragmatic but not ideal... 51%/49% case?!


Introducing soil tiles...

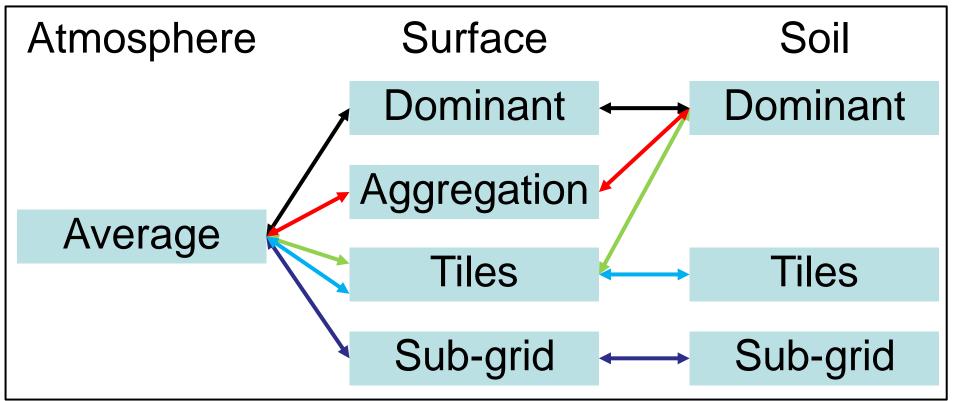
Vanilla JULES


Surface types (trees, grasses, bare soil...)


Surface-soil processes (infiltration, extraction, evaporation...)

Soil types (clay, loam...)

Soil-tiled JULES



Transmogrifier


- Manages overlap of surface and soil tiles
- Proportionate distribution of fluxes
- •Highly flexible configuration options

Recursive paradigms of subgrid heterogeneity

Ave-Sub-Sub is Ave-Dom-Dom with a higher resolution atmosphere

2 dimensional

Summation along rows or columns give surface and soil tile

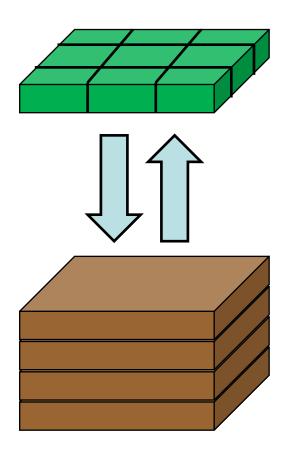
fractions

All elements total unity

Flexible and extendable

	Tree	Grass	Soil	
Clay	0.2	0.4	0.15	0.75
Loam	0.1	0.0	0.15	0.25
	0.3	0.4	0.3	1.0

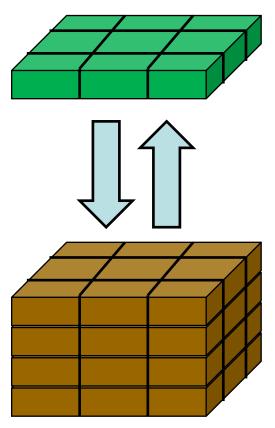
- Case for soil functional types?
 - Parameters could be defined in a new soil_param.nml
 - No soil ancil needed


Examples...

Example 1: Vanilla JULES

- Equivalent to normal JULES (ave-tile-dom)
- Ave-tile-tile with n_soiltile = 1

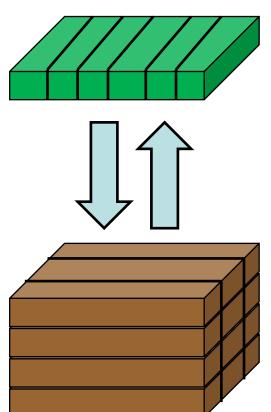
	Tree	Grass	Soil	
Clay	0.4	0.4	0.2	1.0
	0.4	0.4	0.2	1.0



Example 2: Divide & Conquer

- Each surface tile has its own soil column
- Ave-tile-tile with n_surftile = n_soiltile

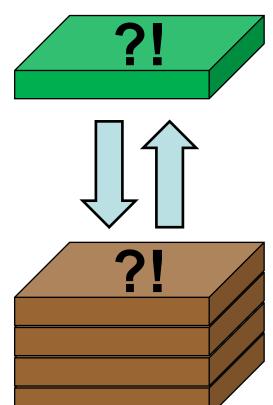
	Tree	Grass	Soil	
Clay	0.2	0.0	0.0	0.2
Clay	0.0	0.4	0.0	0.4
Loam	0.0	0.0	0.4	0.4
	0.2	0.4	0.4	1.0



Example 3: Caring & Sharing

- Every surface tile sits over both soil tiles
- *Ave-tile-tile* with n_surftile ≠ n_soiltile

	Tree	Grass	Soil	
Clay	0.1	0.2	0.2	0.5
Loam	0.1	0.2	0.2	0.5
	0.2	0.4	0.4	1.0



Example 4: Arrrrgh!

- Complex mapping of pfts to soils
- *Ave-tile-tile* with n_surftile ≠ n_soiltile

	Tree	Grass	Soil	
Clay	0.2	0.0	0.05	0.25
Sand	0.0	0.15	0.1	0.25
Loam	0.1	0.1	0.3	0.5
	0.3	0.25	0.45	1.0

Compressed form of a very large diagonal matrix with many instances of each surface and soil types...

Compression of fraction matrix

	Tree	Grass	Soil	
Clay	0.2	0.0	0.0	0.2
Clay	0.0	0.4	0.0	0.4
Loam	0.0	0.0	0.4	0.4
	0.2	0.4	0.4	1.0

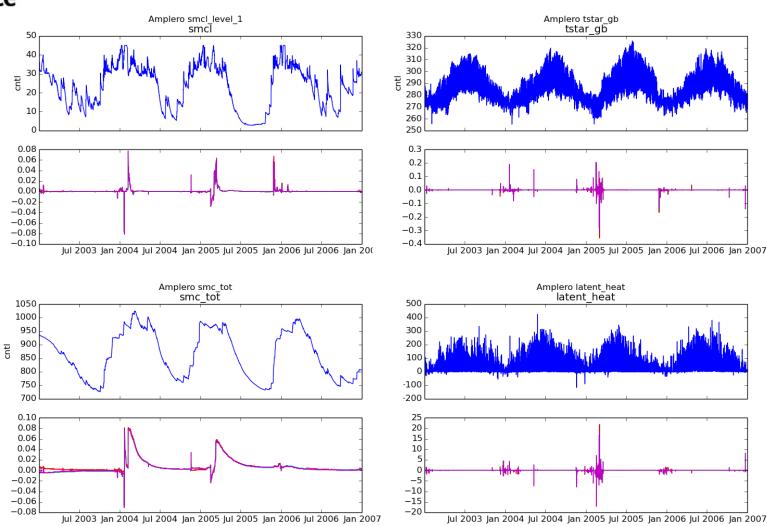
Computational saving vs. model performance

Compressed

	Tree	Grass	Soil	
Clay	0.2	0.4	0.0	0.6
Loam	0.0	0.0	0.4	0.4
	0.2	0.4	0.4	1.0

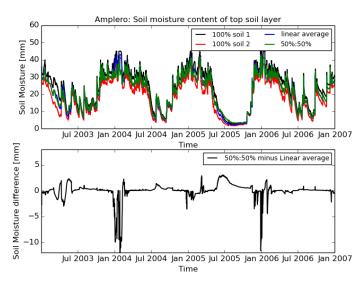
© Crown copyright Met Office

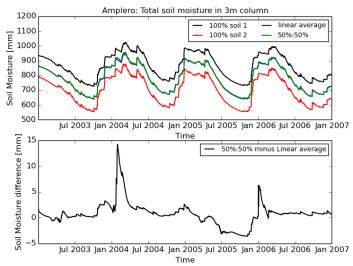
Preliminary Results...

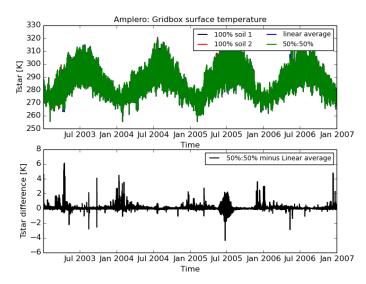


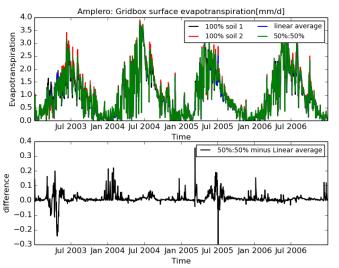
Site: Amplero	NT	ВТ	C3	C4	Shrub	Bare soil	
Soil 1	0.067	0.028	0.272	0.029	0.016	0.087	50%
Clay Loam							
Soil 2	0.067	0.028	0.272	0.029	0.016	0.087	50%
Sandy Loam	 						
	13.5%	5.6%	54.3%	5.8%	3.3%	17.5%	100%

- "Caring & Sharing", Ave-Tile-Tile
- Also run with varying proportions and similarsoil null test (soil 1 = soil 2)
- Variations from linear combination?

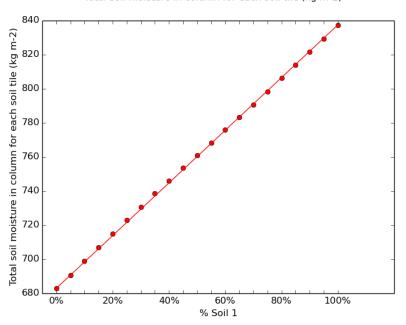


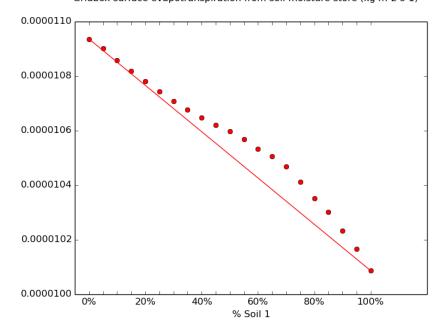

Amplero- Null test





Amplero- different soils





Amplero- Varying soil fractions

Gridbox surface evapotranspiration from soil moisture store (kg m-2 s-1)

Excuses...

Challenges

It's not 'just' a case of adding a new dimension and a couple of DO loops

- Disentangling 'surface' things from 'soil' things
 - Massive effort to correctly identify dimensionality and INTENT of variables.
 - Move code to establish transmogrification points
- New variable naming convention
 - Helps identify dimensionality. 'Tile' is now ambiguous!
- Adding a new dimensions and required functionality
- >130 subroutines added/altered

Current limitations

- Only 1 instance of each surface tile per grid box
 - No ancil with tile properties for every grid box needed
 - Hack probably possible
- Multiple instances of a soil type per grid box allowed
 - Ancil required with every soil type listed
 - Pseudo-subgrid possible

Ancillary vs functional type approach to tiling

Nasties (but fixable ones)

- Model output does change a little, eg during snow melt:
 - Snowdepth underflows to zero on a different timestep
 - Triggers an IF deep in the surface scheme
 - Step change in latent heat flux. Chaos ensues.
 - Tentative plan to replace with sigmoidal-like transition
- TRIFFID incompatible (for now)
 - Competition sometimes returns [slightly] negative surface tile fractions
 - Error check when updating the fraction matrix rejects the new fractions

Conclusions

- New element of sub-grid heterogeneity in JULES
- Helps mitigate the gap in resolution between driving and ancillary data
- Highly flexible configuration options
- Very large technical but scientifically small impact on codebase
- Not ready for release yet

Questions and answers