Spatial simulation of the impacts of Climate Change & Land Use change on soil C in ECOSSE in England & Wales?

Homan Wong, Mark Richards, Jon Hillier, Pete Smith PhD Student (CEH / Univ. Aberdeen)

Background

- ECOSSE is the predecessor of the JULES CN Module
- The ECOSSE version used in this simulation is different from the CN module being in JULES in the following ways:
 - It has its own routines to initialize water
 - It takes air temp as soil temp, a small error expected at depth
 - pH routines not turned on, pH assumed at 7
 - DOC and CH₄ modules not turned on

Structure of the C components of ECOSSE

Reference: Smith, et al. (2010). Model to Estimate Carbon in Organic Soils – Sequestration & Emissions (ECOSSE). User-Manual

Data Input

- Soil
 - Top five dominant soil series in each grid
 - Based on revised national soil map in 2001
 - Soil parameters
 - Four land use types
 - Two main layers: 0-30cm, 30-100cm
 - Measured C content, C%, clay%, Silt%, Sand%, Bulk density

Reference: Falloon, P., Smith, P., Bradley, R.I., Milne, R., Tomlinson, R., Viner, D., Brown, T. 2006. RothCUK – a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use and Management, September , 22, 274–288. doi: 10.1111/j.1475-2743.2006.00028.x

Data Input

- Land use
 - The 1990 CORINE land cover database for the U.K.
 - Arable, Grassland, Semi-natural, Woodland
 - Broad types grouped by Falloon et al. (2006)
- Climate:
 - Baseline: HadRM3 output for 1980 2009
 - 2020 2080: the UKCIP02 predictions for 2020, 2050, 2080. All the four emission scenarios.
 - NPP derived from MIAMI model

Reference: Falloon, P., Smith, P., Bradley, R.I., Milne, R., Tomlinson, R., Viner, D., Brown, T. 2006. RothCUK – a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use and Management, September , 22, 274–288. doi: 10.1111/j.1475-2743.2006.00028.x

Water

- Simple piston flow as described by Bradbury et al. 1993
 - Field capacity / Saturated water content determined by soil composition
 - Potential evapotranspiration calculated by Thornthwaite Method
 - Assumed restricted drainage, excess drainage readjust the water content of the layers from bottom of the profile upward and establish the water table

Reference: Bradbury, NJ, Whitmore AP, Hart PBS, Jenkinson DS (1993). Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat. J Agr. Sci. 121: 363-379

Initial sizes of SOM pools

- Depend on NPP and land use types
- Using Plant Input to spin-up SOM pools for 10,000 years
- Simulated total C value compared with measured C value
- Plant Input adjusted and spin-up again till the difference is 0.0001 kgC ha⁻¹

$$C_{\rm in} = C_{\rm in,def} \times \frac{C_{\rm tot,meas}}{C_{\rm tot,sim}}$$

Results – Impact of Climate Change effects

Results – Impact of Climate Change effects

Emission Scenario	Baseline	2020	2050	2080
High	0	-2.32	-4.92	-7.13
Medium- High	0	-2.29	-4.81	-6.90
Medium-Low	0	-2.29	-4.77	-6.70
Low	0	-2.25	-4.65	-6.49

k value: 0.08 - 0.09% per year loss for the period from 2010 - 2080.

Results – Impact of Climate Change effects

Acknowledgement: thanks for Mark Richards on his map-plotting R script.

Results – Impact of land-use change effects

- The plan is to get two scenarios
 - Improved scenario: 20% Arable land to Grassland
 - Worse scenario: 20% Grassland to Arable land
- Unfortunately, the codes for the improved scenario may be fighting and generate unstable results

Results – Impact of land-use change effects

- 20% grassland to arable is simulated as of:
 - Predicted increase in food demand
 - Suitability of land for agricultural purposes
- Total Change Area:
 - 1,217,660 ha grassland

Results – Land Use Change effects

• Average C Change per LUC area:

This sequence would give you -912 ktC yr⁻¹.
In 70 years, 63 TgC

Thank you