Global & Regional Physical Model Performance - Role of Land Surface?

JULES Science Meeting 2017 - PEGs Session

×1024

- Seamless GC Model Development Process GL & JULES Science
- Mean State Errors GC3 coupled climate & Global NWP
 - AirT, Precip, Soil Moisture, Surface Fluxes...
 - Role of Land-Surface?
- Variability & Extremes Drought & Flood

© Crown copyright Met Office

Global Physical Modelling

Unified Prediction across Timescales

Met Office

GL4 - Feb 2012

- GL:#2 Calculation of the Obukhov length in very light winds
- GL:#5 Surface Roughness (was Enhacements to Surface Exchange)
- GL:#7 Perturbation sensitivity fixes
- GL:#5 Conservative Discretization
- GL:#15 Improved Numerics in Soil Hydrology
- GL:#17 Consistent Calculation of Canopy Snow Depth
- GL:#18 Surface Emissivity on Tiles

GL5 - Feb 2013

- GL:#8: Improved treatment of the surface albedo
- GL:#19: Calculation of sea ice surface temperature
- GL:#32: Increase roughness lengths over sea-ice to GA3.1 values

GL6 - Oct 2013

 $\frac{\text{GL}:\#47}{\text{GL}:\#49}$ Consistent ice thermal conductivities in coupled and non-coupled runs $\frac{\text{GL}:\#49}{\text{GL}:\#49}$ Improved treatment of non-unity emissivity of sea ice

GL7 - Jan 2016

GL:#4 Implementation of the multilayer snow scheme

- GL:#30 Further Improvements to the surface albedo
- GL:#31 Implement the COARE4.0 Algorithm
- GL:#38 Revised roughness lengths for sea ice
- GL:#43 Improved parameterisation of the ocean surface albedo in JULES
- GL:#45 Pass rain fraction to JULES surface hydrology
- GL:#56 Fix bit-comparison issue with TRIP river routing in UM/JULES.

Multi-Layer Snow Impact on T1.5- MAM GA6/GL6 GL7 - GL6

GA6/GL6 bias

© Crown copyright Met Office

GC3 (GL7) Near-surface Temperature vs. CRU TS3.21

(GC3 N216 ORCA025 Land Surface Assessment UMUW 2016 - G Weedon)

GA6.1/GL6 Global OP NWP Air Temperature Drift - JJA 2015

Met Office QG12 JJA 2015 Temp at 1.5m mean error T+120

CAUSES - multi-model inter-comparison project to understand the contributors to the robust Central U.S. summer warm bias

9 global models (2 NWP, 8 climate), 1 regional model

- Model warm bias present in first few days of hindcasts and occurs in lowest ~3 km of the atmosphere during day and night throughout the Central U. S. including at SGP
- Warm bias is due to both overestimated downwelling shortwave radiation at the surface (atmosphere model problem) and underestimated surface evaporative fraction (land model problem?). Surface albedo is a minor contributor in some models.
- Shortwave radiation overestimates are due to underestimates in the radiative effects of deep convective clouds arising from either too infrequent deep convection or insufficiently reflective clouds when deep convection occurs.

http://portal.nersc.gov/project/capt/CAUSES/

GC3 JJA Net Radiation & Cloud vs. CERES-EBAF & ISCCP

GC3 Precipitation v GPCP2

(GC3 Land Surface Assessment UMUW 2016 - G Weedon)

GC3 Soil Moisture vs. ECV

m3/m3

GC3 GPP vs. MODIS

Area-weighted rms diff = 1.93e-08

GA6.1/GL6 Global OP NWP Soil Moisture Drift - JJA 2015

Global OP NWP Soil Moisture Drift - Robust Errors

Met Office QG00 JJA 2015 Vol Soil Moisture mean error Soil Lev1 T+120

N768 & ENDGame...

N512 & New Dynamics...

Met Office QG00 JJA 2012 Vol Soil Moisture mean error Soil Lev1 T+120

- Key global physical model systematic errors in AirT and near surface humidity, soil moisture, GPP....Focus of PEGs?
 - Warming over summer continents Cooling in Winter in NHemisphere
 - Rapid warming-drying of summer monsoon regions India, Africa.
 - Wet East Asian Summer Monsoon, Amazon & Andes/Himalayas
- How do known JULES biases (offline evaluation vs. Fluxnet) relate to water and energy cycle biases in fully coupled GC versions – CAUSES style study at other locations (e.g. India).
- More rapid translation of JULES science developments into GL versions -"Push" from JULES community?

© Crown copyright Met Office