Introduction to JULES

Anna Harper JULES Training Workshop University of Exeter 21 September 2018

The Earth System

One thing changes everything

JULES

Harper et al. 2016, 2018 Geosci. Mod. Dev.

JULES can be run at a single point ...

Photosynthesis at sites where carbon fluxes are measured

Or globally

Observed carbon in vegetation

Modelled carbon in vegetation

Observed carbon in soils

Modelled carbon in soils

Or regionally ...

Analysis by Mark Williamson based on simulations by Jackson et al. (2015) Climate Dynamics

UNIVERSITY OF

ETER

JULES can be used for many purposes ...

- Terrestrial water balance

- υρς
 packup

 Permafror
 permeter

 Surfr
 jrgy fluxes

 Coupled carbor

What is a land surface model?

- Something that solves the energy and water budgets:
- Based on conservation of energy and mass

$$Rn = \lambda E + SH + G \qquad \qquad \frac{dS}{dt} = P - E - Rs - Rg$$

Net radiation=

Latent heat flux

+ Sensible heat flux

+ Ground heat flux

1st Generation LSM; Pitman 2003, J. International Climatology

What is a land surface model?

- Something that solves the energy and water budgets:
- Based on conservation of energy and mass

$$Rn = \lambda E + SH + G$$

$$\frac{dS}{dt} = P - E - Rs - Rg$$

Change in soil water=

Precipitation

- + Evaporation
 - + Sub-surface runoff
 - + Overland runoff

What is a land surface model?

- Something that solves the energy and water budgets:
- Based on conservation of energy and mass

$$Rn = \lambda E + SH + G \qquad \qquad \frac{dS}{dt} = P - E - Rs - Rg$$

• Later generations added carbon budgets

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

- Stomatal conductance
- "Big Leaf" representation of vegetation

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

- Stomatal conductance
- "Big Leaf" representation
 of vegetation

Third generation

- Photosynthesis
- Carbon cycle

1980

1990

- Scale from leaf to canopy
- Net primary production of plants input carbon into land, respiration removes it —> representation of terrestrial carbon cycle

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

1990

- Stomatal conductance
- "Big Leaf" representation of vegetation

Third generation

- Photosynthesis
- Carbon cycle

1980

Fourth generation

- Biogeography
- vegetation dynamics

2000s

So what about JULES?

So what about JULES?

y

MOSES: surface exchange

A canopy conductance and photosynthesis model for use in a GCM land surface scheme

P.M. Cox^{a,*}, C. Huntingford^b, R.J. Harding^b

Journal of Hydrology 212-213 (1998) 79-94

TRIFFID: dynamic vegetation

Description of the "TRIFFID" Dynamic Global Vegetation Model

Peter Cox

Hadley Centre, Met Office, London Road, Bracknell, Berks R12 2SY, UK pmcox@meto.gov.uk

January 17, 2001

So what about JULES?

The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes

M. J. Best¹, M. Pryor², D. B. Clark³, G. G. Rooney¹, R. L. H. Essery⁴, C. B. Ménard⁴, J. M. Edwards¹, M. A. Hendry¹, A. Porson¹, N. Gedney², L. M. Mercado³, S. Sitch⁵, E. Blyth³, O. Boucher^{1,*}, P. M. Cox⁶, C. S. B. Grimmond⁷, and R. J. Harding³

The Joint UK Land Environment Simulator Gereres, model Development Model Development description – Part 2: Carbon fluxes and vegetation dynamics

D. B. Clark¹, L. M. Mercado¹, S. Sitch², C. D. Jones³, N. Gedney⁴, M. J. Best³, M. Pryor⁴, G. G. Rooney³, R. L. H. Essery⁵, E. Blyth¹, O. Boucher^{3,*}, R. J. Harding¹, C. Huntingford¹, and P. M. Cox⁶

Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types

Anna B. Harper¹, Andrew J. Wiltshire², Peter M. Cox¹, Pierre Friedlingstein¹, Chris D. Jones², Lina M. Mercado^{3,4}, Stephen Sitch³, Karina Williams², and Carolina Duran-Rojas¹

Soil Carbon

Evolution of LSM

First generation

- "Bucket" model of hydrology
- No representation of vegetation

1980

1990

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

- Stomatal conductance
- "Big Leaf" representation of vegetation

1980 1990 r_a stomatal pore In the subroutine sf_stom CO₂ H₂O heat r b impermeable stomatal cuticle guard cell **Calculations of** r_{st} photosynthesis and stomatal conductance leaf PAR mesophyll sub-stomatal $A = g_{\rm s}(C_{\rm c} - C_{\rm i})/1.6$ $e^{*}(T_{s})$ cavity with saturated walls (man) r_m H₂O chloroplast $A_{\rm P} = \min(W_{\rm C}, W_{\rm L}, W_{\rm E})$ CO_2 From Clark et al. 2011 C₆H₁₂O₆ runoff Sellers et al. 1997; Pitman 2003, J. International Climatology

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

- Stomatal conductance
- "Big Leaf" representation
 of vegetation

Third generation

- Photosynthesis
- Carbon cycle

1980

1990

- Scale from leaf to canopy (depends on canopy radiation scheme)
- Net primary production of plants input carbon into land, respiration removes it —> representation of terrestrial carbon cycle

Option	Leaf to canopy scaling	Radiation	N profile	Inhibition of leaf respiration in light
1	Big leaf	Beer's law	Beer's law	no
2	Multi-layer	Two stream	Constant through canopy	no
3	Multi-layer radiation with two classes (sunlit and shaded) for photosynthesis	Two stream	Constant through canopy	no
4	Multi-layer	Two stream	Decreases through canopy	yes
5	Multi-layer including sunlit and shaded leaves in each layer	Two stream with sunfleck penetration	Decreases through canopy	yes

Clark et al. 2011; Sellers et al. 1997; Pitman 2003, *J. International Climatology*

Canopy Radiation

CanRadMod = 1

Average, "big leaf"

CanRadMod = 6

- 1. Canopy divided into 10 layers
- 2. Direct and diffuse beam
- 3. Sunflecks
- 4. Leaf respiration inhibited in light
- 5. N decreases through canopy

These factors determine net photosynthesis of the plant

CanRadMod6: See Harper et al. 2018

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

1990

- Stomatal conductance
- "Big Leaf" representation of vegetation

Third generation

- Photosynthesis
- Carbon cycle

1980

Fourth generation

- Biogeography
- vegetation dynamics

2000s

First generation

- "Bucket" model of hydrology
- No representation of vegetation

Second generation

- Stomatal conductance
- "Big Leaf" representation
 of vegetation

Third generation

- Photosynthesis
- Carbon cycle

1980

1990

Fourth generation

- Biogeography
- vegetation dynamics

2000s

Some other things I haven't mentioned ...

- Hydrology
- Soil physics
- Snow processes
- Rivers, inundation, runoff
- Phenology
- N cycle
- Fires
- Land use and agriculture

See <u>http://jules.jchmr.org/</u> <u>content/about</u> for more info or ask one of us.

References

- Best et al. 2011, The Joint UK Land Environment Simulator (JULES), model description Part 1: Energy and water fluxes, Geoscientific Model Development
- Clark et al. 2011, The Joint UK Land Environment Simulator (JULES), model description Part 2: Carbon fluxes and vegetation dynamics, *Geoscientific Model Development*
- Cox et al. 1998, A canopy conductance and photosynthesis model for use in a GCM land surface scheme, *J. Of Hydrology.*
- Cox et al. 1999, The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, *Climate Dynamics*
- Cox et al. 2001, Description of the "TRIFFID" dynamic global vegetation model, Hadley Centre Technical Note 24
- Harper et al. 2016, Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information, *Geoscientific Model Development*
- Harper et al. 2018, Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, *Geoscientific Model Development*
- Jackson et al. 2015, Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM, *Climate Dynamics*
- Pitman 2003, The evolution of, and revolution in, land surface schemes designed for climate models; *J. Of International Climatol.*
- Sellers et al. 1997, Modelling the exchanges of energy, water and carbon between continents and the atmosphere, Science