

Joint Weather & Climate Research Programme – a partnership in weather and climate research

Atmospheric Dry Deposition in JULES

Garry Hayman¹ & Semeena Shamsudheen¹

With thanks to: Douglas Clark¹, Luke Abraham², Catherine Hardacre³, John Hemmings³, Richard Gilham³, Maggie Hendry³ & Jane Mulcahy³,

(1) UK Centre for Ecology & Hydrology, UK; (2) NCAS & University of Cambridge, UK;
(3) Hadley Centre, UK Met Office

JULES Annual Meeting 15th September 2021

Atmospheric dry deposition

- Important atmospheric process
 - Governs atmospheric abundance of many compounds (e.g., O₃, H₂O₂, HNO₃, SO₂, NH₃, aerosol, ...)
- Important process for the biosphere
 - · Governs input of key nutrients/oxidants to vegetation
- Links atmosphere and biosphere
 - Contributes to climate and Earth system feedbacks

O₃ injury to wheat, Pakistan (courtesy of A. Wahid)

- Policy-relevant implications for air quality, crop yields, etc.
 - Critical loads for acid deposition and eutrophication
 - Ozone exposure and effects on human health and vegetation
 - Particulate matter (aerosol) and impact on human health

Modelling dry deposition processes

- models, use a "Wesely-resistance" approach
- Atmospheric dry deposition currently in UKCA •

Dry deposition schemes in the UKCA model

[O₃] Aerodynamic Atmosphere resistance (Ra) Turbulent Boundary laver resistance (Rb) transfer to the surface Cuticular resistance Stomatal resistance (Rcut) (Rstom) 5000 LAI In-canopy Aerod. Res. Ice Canopy (Rac) Res. (Rc) resistance Water (Rice) resistance (Rwat) Ground resistance (Rsoil) Bare soi Irban resistance esistance (Rbare) Rurb) Broad/needle leaf trees, C3-C4 grass, shrubs

Current scheme in UKCA (UKESM)

- ➢ Wesely (1989) scheme for gas-phase species
- Deposition of aerosol species based on roughness length and the use of prescribed deposition velocities. Also sedimentation.
- Need to mirror pft order/description used in JULES

HadGEM3 branch F. Centoni (CEH & U. Edinburgh)

- Implementation of Zhang et al. scheme (Atmos. Chem. Phys. 2003) for O₃
- Allows for stomatal blocking when wet, which reduces stomatal uptake.

Dry Deposition Velocity

$$V_d = \frac{1}{R_a + R_b + R_c}$$

 R_a - Aerodynamic resistance R_b - Qasi laminar layer resistance R_c - Surface resistance

 $R_c = LAI R_s + R_{ns}$

 R_s - Stomatal resistance R_{ns} - Non stomatal resistance

Current position

Code development

- Deposition I/O in JULES trunk from vn5.5 (Doug Clark)
- JULES with Atmospheric Deposition (for UKCA 'as is' and flexible tiling): <u>https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/garryhayman/JULES_vn6.1_atmospheric_deposition</u> <u>https://code.metoffice.gov.uk/trac/um/browser/main/branches/dev/garryhayman/vn12.0_JULES_atmospheric_deposition</u>
- JULES with Atmospheric Deposition (implementing deposition scheme of Zhang et al.): https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/garryhayman/JULES_vn5.9_atmospheric_deposition_zhang
- Identified 'bug' in existing UKCA surface resistance routine: parts of code hardwired to 5-pft configuration. Now corrected by Alan Hewitt: <u>https://code.metoffice.gov.uk/trac/um/browser/main/branches/dev/alanjhewitt/vn11.1_fix_npft</u>
- Identified further 'bugs' in existing UKCA deposition routines, reported to ukca_bugs

Model runs and testing

- Wesely (1989) Scheme JULESvn5.9
- EMEP Surface resistance JULES vn5.9
- Zhang et al.,(2003) scheme JULES vn5.9 and vn6.1

Site-specific runs

- Adapted JULES FLUXNET suite (u-al752) to use JULES Deposition Branch: u-bh191
- Suite upgraded to use JULES vn5.9
- Sourcing and collating driving meteorological, ancillary and deposition-related measurements for model evaluation

	Site biome	Data Availability			
Site		Met.	Ancillary	Deposition	Part of JULES FLUXNET Suite
Harvard Forest (US)	Deciduous broad-leaf forest	Y	Y	Not Yet	Y
Blodgett Forest (US)	Evergreen needle-leaf forest	Y	Y	Not Yet	Y
Hyytiälä (FI)	Evergreen needle-leaf forest	Y	Y	Y: O ₃	Y
Castel Porziano (IT)	Evergreen broad-leaf forest	Y	Y	Y: O ₃	Y
Grignon (FR)	Сгор	Y	Y	Y: O ₃	Y
Oensingen (CH)	Grassland	Y	Y	Y: O ₃	Y
Alice Holt (UK)	Broadleaf woodland				
Auchencorth Moss (UK)	Ombrotrophic peatland	Y	Y	Y	
Easter Bush (UK)	Improved grassland	Y	Y	Y	

Assistance of Karina Williams, Eddy Comyn-Platt and Carolina Duran Rojas gratefully acknowledged

Surface Resistance Values

	Wesely	EMEP
R_tundra	800.0	400.0
R_wetsoil	500.0	400.0
BL_Deciduous	285.7	543.2
BL_Evergreen	280.4	278.7
BL_Temperate	307.7	278.7
NL_Deciduous	233.5	543.2
NL_Evergreen	232.6	276.2
C3G	355.0	271.6
Shrub_deciduous	645.0	2000.0

Deposition Velocity

Hyytiala: Deposition Velocity (Vd) [cm/s], O3

CH_Oe1: Deposition Velocity (Vd) [cm/s], O3

Results: Gross Primary Productivity

Dry Deposition in UKESM

Code into JULES & UM trunks

- To allow flexible tiling for UKESM applications and to use UM-UKCA with 2 urban surfaces
- Starting science review
- Metadata and upgrade marcos
- Deposition diagnostics & stash
- Aiming for release after October 2021

Future Requirements

- Consistency between UKCA (Gas and Aerosols) and JULES as more land surface types added
- Deposition to other surfaces, e.g., ocean and cryosphere
- Aerosol Deposition
- Move towards more process-based dry deposition schemes, especially for aerosol species
- Longer-term: Move towards 'bidirectional surface exchange' schemes: deposition, (re-) emission and PBL mixing