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Peatlands: an important and potentially unstable carbon 
store

Methane CO2

> 500 Gt C



  

Peatlands: an important and potentially unstable carbon 
store
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Problem number 1

● Soil column needs to be able to grow to accumulate peat



  

Problem number 1

● Soil column needs to be able to grow to accumulate peat

Observations: Gallego-Sala et al., 2018 Nat Clim Change 8 907-913



  

Problem number 1: Solution

● Effective layer thickness during update of soil carbon

● Interpolate back onto original soil layers: scheme that preserves 
vertical structure
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Problem number 1: Solution

Observations: Gallego-Sala et al., 2018 Nat Clim Change 8 907-913



  

Problem number 2: Stability and resilience

● Peatland ‘function’ can restore water table to surface when it 
drops

● Carbon loss/gain can be self-reinforcing → instability



  

Solution: Hydraulic properties of peat vary with 
decomposition status and control its dynamics

● Prescribe bulk 
density of carbon 
pools in JULES:

Higher bulk density 
for more 
decomposed 
organic matter

● Use relationships  
← to update soil 
properties
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Dynamics of drained peatland

Water table drops. Peat decomposes and becomes compacted…   
(water table can sometimes re-form on top of compacted layer)

Wet
Dry

Drained (wet→dry)



  

Dynamics of drained peatland

Water table drops. Peat decomposes and becomes compacted…   
(water table can sometimes re-form on top of compacted layer)



  

Remaining challenges for modelling

● Hydrology: Can be simulated for individual peatland if not 
groundwater fed (Bechtold et al., 2019). Challenge to integrate 
seamlessly in large-scale model and to simulate lateral flow.

● Vegetation: New plant functional types needed. Interactions 
with water table → instability. 

Bechtold., et al 2019 J. Adv. Model. Earth Syst. 11 2130-2162



  

For JULES users

● vn6.1_accumulate_soil (thanks Eleanor)

● Switches (in jules_soil_biogeochem namelist, note you must also have 
l_layeredc=.true.)

– l_accumulate_soil

– l_dynamic_soilprops

● Calculates age of soil carbon in each layer/pool:              

– l_soilage = .true.



  

For JULES users

● vn6.1_accumulate_soil (thanks Eleanor)

● Switches (in jules_soil_biogeochem namelist, note you must also have 
l_layeredc=.true.)

– l_accumulate_soil

– l_dynamic_soilprops

● Calculates age of soil carbon in each layer/pool:              

– l_soilage = .true.

Thanks for listening :)
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