Response of JULES to urban parameters at a high-rise residential area in Korea

Hyeri Kim¹, Je-Woo Hong², Jinkyu Hong², Yun-jin Lim¹, Yoon-jae Kim¹

¹ National Institute of Meteorological Sciences, Korea Meteorological Administration ² Yonsei University, Korea

Outline

•

High-rise residential area in Korea

Evaluation of the urban SEB

Sensitivity analysis of the urban parameters

JULES Science Meeting at HAU, UK, 5 September 2018

Introduction

Motivation

- Rapid urbanization of the world, especially in Korea, East Asia
 - : 91% of the population lives in cities (only 17% of the land area).
- Lack of the study for the LSM performance to simulate the urban surface energy balance (SEB) at urban areas in Korea.

Objetives

- To quantify the performance of the urban SEB simulation with JULES in high-rise residential area in Korea.
- \checkmark To identify the key urban parameters for simulating SEB.
- ✓ To know the effect of the change of key urban parameter value to the modeled SEB.

JULES Science Meeting at HAU, UK, 5 September 2018

Methods

EunPyeong (EP) Newtown

FP

- Large-scale residential area.
- High-density: 4600 people km⁻²
- High-rise: 6–15 stories of buildings
- Compact high-rise (type1) on LCZ classification (*Stewart and Oke, 2012*).
- Urban green areas (gardens and street trees).

Observations in EP Flux Site

- Eddy Covariance flux tower (N 37.63°, E 126.93°)
- 200 m flux footprint
- 135°-315° wind dir.
- 70% urban, 14% BL, 2% NL, 4% C3, 10% Shrubs
- Mar 1st 2015 Feb 29th 2016 (1 yr.)

✓ Hotter and drier than climatology (+0.8°C, -644 mm)

✓ Less rainfall during the Jang-ma period (-145 mm, 25 June – 29 July)

Shrubs

Urban

JULES - MORUSES

- JULES (Joint UK Land Environment Simulator) ver. 4.2
- MORUSES

(Met Office Reading Urban Surface Exchange Scheme)

modified from Bohnenstengel et al., 2011

Evaluation of Urban SEB

 Q^* , Q_H and Q_E have been evaluated with the direct measured flux data.

Sensitivity Analysis

• One-at-a-time (OAT) method

: changing one parameter value 10% from default value at a time

• Sensitivity (
$$\Delta$$
): $\Delta = \frac{Flux_{10\%} - Flux_{CTL}}{|Flux_{CTL}|} \times 100 (\%)$

Urban Parameter Settings for EP

- Morphological parameters (wrr, hwr, hgt)
 : calculated from lidar DEM data
- ✓ W/R (wrr) = 0.61
 → buildings consist 40% of plan area
- ✓ H/W (hwr) = 0.78
 → building height is 7.8 m when road width is 10 m

```
    ✓ H (hgt) = 21.4 (m)
    → mean building height is 21.4 m
```


- Material properties (alb_*, emis_*, ...)
 : asphalt road, concrete wall and roof (Oke, 1987)
- Anthropogenic heat (anthro)
 - : inventory data from Lee and Kim (2015)

JULES Science Meeting at HAU, UK, 5 September 2018

Results and Discussions

Model performance (1)

$(101 m^{-2})$			Q^*			Q _H		Q _E		
(******)	ŀ	All-day	Day	Night	All-day	Day	Night	All-day	Day	Night
Mean (OBS)		110.7	279.8	-36.2	59.1	116.7	9	21.9	37.9	8
Bias		-15.5	-24	-8.1	5.5	-1	11.2	3.3	6.5	0.5
RMSE		19.8	26.6	10 Q	30.6	36.8	24	24	29.8	17.6
MAE	14%	15.9	24	39	% > 22.9	28.4	71	% 15.6	20.9	11.1
IOA		0.997	0.993	0.98	0.956	0.938	0.702	0.81	0.749	0.491

Model performance (2)

O^* (10/ m ⁻²)	Spring			Summer			Autumn			Winter		
	All-day	Day	Night									
Mean (OBS)	150.8	327.5	-48.1	130.7	295.9	-21.6	76	252.7	-35.6	68.4	203.7	-41
Bias	-15.7	-22.2	-8.4	-20.1	-29.7	-11.3	-13.8	-24.2	-7.2	-10.9	-18.3	-4.9
RMSE	19.2	24.2	11.2	24.6	32.7	13.5	18.1	26.8	9.1	14.6	19.8	8.2
MAE	16.2	22.2	9.3	20.3	29.7	11.5	14	24.2	7.5	11.8	18.5	6.4
IOA	0.998	0.995	0.981	0.996	0.99	0.959	0.997	0.99	0.985	0.997	0.991	0.988
very GOOD performance									14/			

Model performance (3)

Sensible Heat Flux

O (M/m^{-2})	Spring		Summer		Autumn			Winter				
	All-day	Day	Night	All-day	Day	Night	All-day	Day	Night	All-day	Day	Night
Mean (OBS)	85.6	148.3	14.9	58.1	110	10.3	39.9	96.6	4.1	45.7	93.6	6.8
Bias	5.7	0.5	11.5	12.7	8	17	5.7	-3.1	11.3	-4.6	-14.2	3.1
RMSE	32.3	38.1	24.1	33.6	39.9	26.6	28.3	33.6	24.4	26.3	32.7	19.7
MAE	25	30.1	19.3	25.5	31.2	20.3	20.9	26	17.7	18.9	24.2	14.6
IOA	0.967	0.946	0.735	0.942	0.921	0.647	0.936	0.911	0.586	0.945	0.917	0.787
	fairly good at daytime but weak at nighttime 15/											

Model performance (4)

$(101 m^{-2})$	Spring			Summer			Autumn			Winter		
	All-day	Day	Night									
Mean (OBS)	22.8	36.4	7.5	35.8	60.2	13.2	17.9	35.3	7	6.8	11	3.4
Bias	5.8	11.2	-0.3	0.9	0.6	1.2	4.2	9.2	1	1.7	4.2	-0.3
RMSE	23.4	28.6	15.6	33.2	40.5	24.7	20.7	26.4	16.2	9.6	11.3	8
MAE	16.1	21.2	10.3	23.1	30	16.8	14.1	19.6	10.7	6.8	8.6	5.3
IOA	0.81	0.717	0.423	0.763	0.589	0.456	0.8	0.688	0.486	0.709	0.618	0.541
fairly WEAK performance								16/				

Model performance (5)

Heat Storage and Sensible Heat Flux

Heat Storage and Latent Heat Flux

Model response (1)

	\mathbf{Q}^{*}	Q _H	QE
anthro	-	++	
wrr			+++
alb_r	-	-	
alb_w	-		
alb_f	-		
emis_r	-	-	
emis_w	-	-	
emis_f			
cdz	-	-	
z0mm	+	++	

Model response (2)

\mathbf{Q}^{*}	Q _H	QE
	+	
+++	7 -	++
	-	
-	-	
-		
	-	
-		
	-	
	-	
	+	
	Q* +++ - -	Q* Q _H ++ +++ 7 +

Model response (3)

	\mathbf{Q}^{*}	Q _H	Q _E
anthro	++	++++	++
wrr	10 +	13 +	8 +
hwr		6 +	+
alb_r		-	
alb_w			-
emis_r	+	+++	-
emis_w	+	++	-
emis_f		-	
cap_r		+	
cap_w	+	++++	+
cap_f	+	+	
diffus_w		+	
dz_f	+	+	
catch_c			++
cdz	+		
z0mm	-	++	

Response to W/R (1)

wrr $\downarrow \rightarrow$ building fraction $\uparrow \rightarrow$ roughness $\uparrow \rightarrow$ turbulent mixing $\uparrow \rightarrow$ daytime $Q_{H}\uparrow \rightarrow$ daytime $\Delta Q_{S}\downarrow \rightarrow$ nighttime $Q_{H}\downarrow \rightarrow$ nighttime $\Delta Q_{S}\uparrow$

21/25

Response to W/R (2)

Latent Heat Flux

wrr $\checkmark \rightarrow Q_E$ of Canyon $\checkmark \& Q_E$ of Roof $\uparrow \rightarrow Q_E \checkmark$

Latent Heat Flux

Canopy Water

JULES Science Meeting at HAU, UK, 5 September 2018

Summary

Summary

- The urban surface energy balance (SEB) was evaluated with in-situ observed flux data at a high-rise urban residential area in Korea.
 - ✓ The modeled net radiation(Q^{*}) was relatively consistent with the observed one, and the modeled sensible heat flux (Q_H) was moderately accurate, but the latent heat flux (Q_E) had significant errors (14%, 39% and 71% of MAE compare to the mean obs., respectively).
 - ✓ The model showed the overestimation of the sensible heat flux at nighttime over the year, and the underestimation at daytime in autumn and winter.
 - The latent heat flux was overestimated most of the time, but underestimated at afternoon in summer.
- The sensitivity analysis of the 22 urban parameters for simulating urban SEB using MORUSES scheme was conducted.
 - \checkmark The key parameter to estimate three SEB fluxes (Q^{*}, Q_H, Q_E) was the canyon fraction (W/R).
 - ✓ The value of wrr had negative (positive) correlation with the sensible heat flux during the daytime (nighttime). This response was related to the response of the heat storage.
 - The response of the latent heat flux to the change of wrr value needs to be investigated further.

Thank you

Hyeri Kim hyerikim@korea.kr

