Modeling Fire on the African continent

SPITFIRE in LPJ - GUESS

SPITFIRE in LPJ - GUESS

Exeter 07/29/2007

Objectives (amongst others):

Understand quantify and predict the GHG budget of Sub-Saharan Africa and its associated spatial and temporal variability LPJ Guess reproduces tree/grass mixtures badly Fire is suggested to be one of the main actor in maintaining vegetation structure in areas like savannas

Approach:

Integrated, considering flux measurements together with specific models

Results:

Will provide the knowledge elements necessary for reducing uncertainty and bias in GHG budget estimates

Aims: of implementing SPITFIRE fire module

(I) Vegetation modeling:

LPJ Guess reproduces tree/grass mixtures badly Fire is suggested to be one of the main actor in maintaining vegetation structure in areas like savannas

(II) Fluxes:

Wild fires as well as fires for agricultural clearance produce fluxes of CO_2 , CO, NOx VOC, methan.... while re-growth utilizes CO_2 , hence there is only a limited long effect to be expected, other gas species depend strongly on the fire frequency, timing, fuel availability and combustion

LPJ vs LPJ GUESS: Population mode vs. Cohort mode

SPITFIRE

LPJ GUESS

Ignition

Propagation

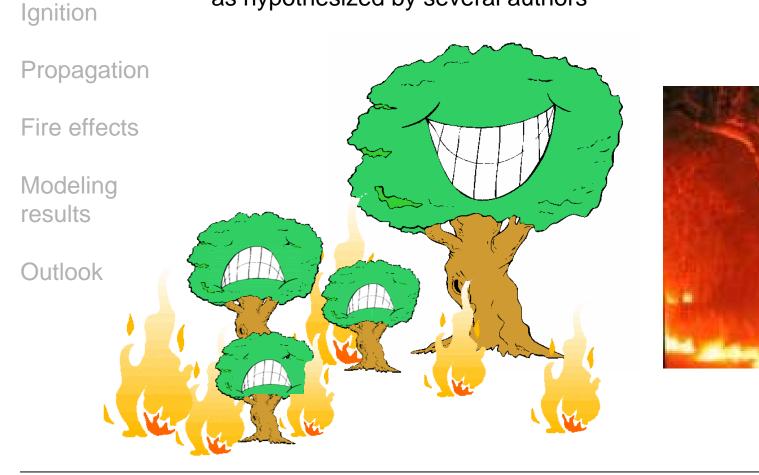
Fire effects

Modeling results

Outlook

LPJ

Each PFT is represented by a single 'individual' no stochastic processes, no age structure (establishment) In some respects comparable with TRIFFID. LPJ GUESS



Each tree PFT can have several individuals growing, which represents an age-cohort. To average out effects of establishment and include disturbances, several realizations (patches) are calculated and averaged. In some ways comparable ED but all tiles have equal size. Aims using SPITFIRE in the Cohort mode

SPITFIRE

LPJ GUESS

Fire affects young (small) cohorts strongersize related mortality ->could maintain tree grass mixture as hypothesized by several authors

SPITFIRE: SPread and InTensity of Fire

SPITFIRE

LPJ GUESS

Ignition

Propagation

Fire effects

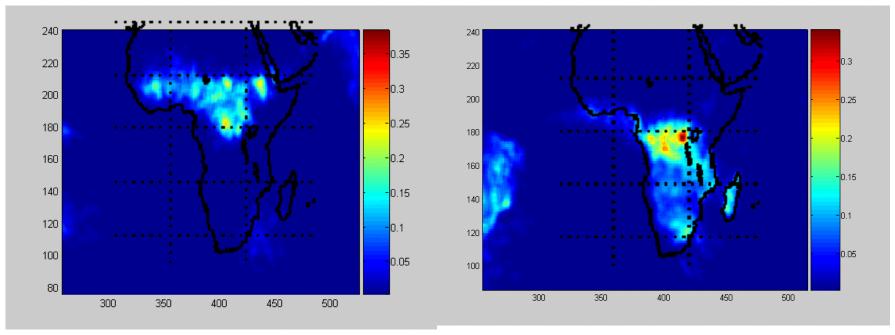
Modeling results

Outlook

SPITFIRE simulates fires depending on: above ground fuel load climatic conditions / litter moisture human ignition pattern

SPITFIRE Fires cause in LPJ GUESS Post fire plant mortality

Biomass reduction due to burning



 SPITFIRE
 Spitfire Natural Ignition: Lightning

 LPJ GUESS
 Satellite based climatology of lightning

 Ignition
 From OTD/LS; correction ratio by Price (1999)

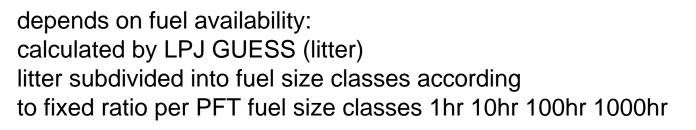
Propagation HRMC 0.5 degree monthly climatology [flashes per km² and day] July January

SPITFIRE Fire Spread

SPITFIRE

LPJ GUESS

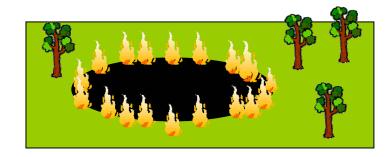
Ignition


Propagation

Fire effects

Modeling results

Outlook


Fire spread

also influenced by fuel moisture (soil moisture) and wind speed

fuel bulk density (PFT specific)

Fire is assumed to form an elliptical shape

SPITFIRE in LPJ - GUESS

Wind

Exeter 06/29/2007

SPITFIRE

LPJ GUESS

Ignition

Human influence on fire regime

99% of all fires are anthropogenic

Propagation

Fire effects

Modeling results

Outlook

Human caused fires can

be directly prescribed

to calculate recent emissions and vegetation

be scaled to human population density, land use and climatic conditions

to simulate scenarios

SPITFIRE

LPJ GUESS

Ignition

Propagation

Fire effects

Modeling results

Outlook

Fire effects:

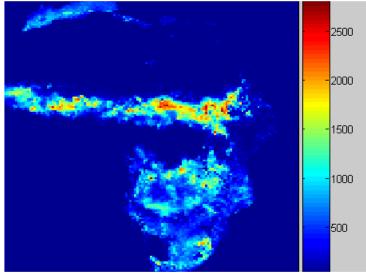
Fire intensity depends on fuel availability and environmental conditions

leads to crown scorching and cambial damage and hence to post fire mortality

Results: Total burned area spatial and variation: prescribed and nat. fire

SPITFIRE

LPJ GUESS


Ignition

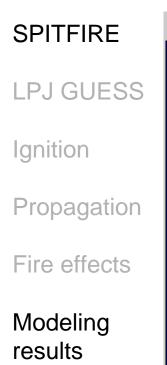
Propagation

Fire effects

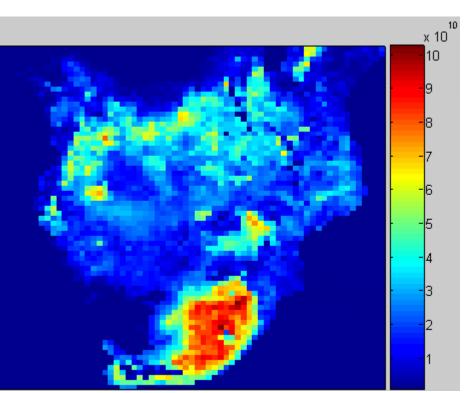
Modeling results

Outlook

km² burned area per 0.5 degree cell (3080 km² total)


 Southern Hemisphere A.: total burned area:
 Guess presc fire 1.83*10⁶ km² Guess nat. fire only 0.90*10⁶ km²

A slightly changed Giglio et al. (2006) alg. was used for the prescribed fire.


Burned area natural ignition

SPITFIRE in LPJ - GUESS

Results: emissions : prescribed and nat. fire

Outlook

CO emissions per pixel (g/year)


Southern Hemisphere A.: CO emissions

Guess prescr. fire	70	Τg
Guess nat. fire only	38	Тg
Ito et al. (2007)	60	Тg

Perspective Milestones

SPITFIRE

LPJ GUESS

Ignition	Flux calculation CO ₂ & trace gases : Site (7 local CarboAfrica flux stations) with site climate
Propagation	and continental runs
Fire effects	
Modeling results	Incorporation of fire intensity related versus PFT specific emission factors
Outlook	
	Calculation of projected emissions and vegetation according to IPCC scenarios