Does Particulate Matter reduce Crop Yields on the North China Plain?

Mike Wolffe, Oliver Wild, Steve Long, Kirsti Ashworth

Background

- PM intercepts incoming radiation
- PM scatters or absorbs shortwave radiation
- This impacts light use efficiency and total levels of leaf photosynthesis

Method

- JULES crop vn5.3 is used in this modelling, with maize configuration from Williams et al. 2017
- Model runs parametrised for a climatological average over NCP
- Meteorology from ERA-5 and run at 0.25 degree spatial and hourly temporal resolution

Base Runs

- There is a positive relationship between mean hourly SW and yield
- There is a negative relationship between mean hourly diffuse fraction and yield
- The relationship between diffuse fraction and yield is due to the relationship between total SW and diffuse fraction
- AOD is strongly correlated to diffuse and related to SW

City Runs

City Runs

Development Stage

Reducing PM across China could increase the country's maize yields by as much as 8Mt

