# Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling 

N Dong, A Kamolphat, B Gallego-Elvira, SP Harrison, LM Mercado, CM Taylor, QH Song, YP Zhang, IC Prentice

## Department of Biological Sciences, Macquarie University,

ning.dong@students.mq.edu.au

## Theory

- In steady state, net radiation $\left(R_{n}\right)$ is balanced by the combined sensible and latent heat fluxes:

$$
\begin{equation*}
R_{\mathrm{n}}-c_{\mathrm{p}} g_{\mathrm{b}} \Delta T-\lambda E=0 \tag{1}
\end{equation*}
$$

leading (via the Penman linearization) to the classical energy balance equation:

$$
\begin{equation*}
\Delta T=\left(R_{\mathrm{n}}-\lambda g^{\bullet} D\right) / c_{\mathrm{p}}\left(g_{\mathrm{b}}+\varepsilon g^{\bullet}\right) \tag{2}
\end{equation*}
$$

- Leaves have a small heat capacity, so they track the steady state (time scale $\approx 1 \mathrm{~min}$ )


## Theory

- A simple approximation:

$$
\begin{equation*}
\lambda E=(1+\omega)[s /(s+\gamma)] R_{\mathrm{n}} \tag{3}
\end{equation*}
$$

leads to a simplified equation:

$$
\begin{equation*}
\Delta T=R_{\mathrm{n}}\{1-(1+\omega)[s /(s+\gamma)]\} / c_{p} g_{b} \tag{4}
\end{equation*}
$$

- $\Delta T$ decreases with increasing temperature
- $\Delta T<0$ above $\approx 30^{\circ} \mathrm{C}$ ('crossover temperature')


## Background


25.1

Linacre ET (1967) AFM

## More observations of $\Delta T$




Michaeletz et al. (2015) TREE

## Crossover observed at leaf level



N Dong et al., in revision

## Crossover observed by canopy monitoring





N Dong et al., in revision

## Global pattern of $\Delta T$ using MODIS LST

Monthly average $\Delta \mathrm{T}$ in July 2013


A Kamolphat, 2016

## Crossover observed in MODIS LST

SMA Regression of $\Delta T$ vs $\boldsymbol{T}_{a}$ in All Forest Tpes


A Kamolphat, 2016

## Prediction of $\Delta T$ with the simple model (temperate deciduous forest)

Observed vs Predicted $\Delta T$ in Temperate Deciduous Broadleaf Forests using $R_{n i}$ and $T_{a}$


A Kamolphat, 2016

## Prediction of $\Delta T$ with the simple model (boreal forest)

Observed vs Predicted $\Delta T$ in Boreal Evergreen Needleleaf Forests using $R_{n i}$ and $T_{a}$


## Key quantities can be inferred

- Crossover temperature: $\mathrm{Cr}, \alpha_{0}=1+\omega$, and $g_{b}$, $k: C_{\mathrm{p}} g_{\mathrm{b}}$ inferred from MODIS LST and WFDEI data

| Forest type | Predicted $\boldsymbol{k}$ | Observed Cr temp. $\left({ }^{\circ} \mathbf{C}\right)$ | Observed $\boldsymbol{\alpha}_{\boldsymbol{0}}$ | Observed $\boldsymbol{k}$ | Inferred $\boldsymbol{g}_{\boldsymbol{H}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TroBF | 7.60 | 27.27 | 1.32 | 9.31 | 0.32 |
| WaTBF | 12.01 | 25.61 | 1.35 | 15.87 | 0.54 |
| WaTMF | 16.34 | 27.62 | 1.32 | 19.72 | 0.67 |
| TeDBF | 12.00 | 25.36 | 1.35 | 16.03 | 0.55 |
| TemMF | 20.44 | 23.62 | 1.39 | 29.52 | 1.01 |
| TeENF | 20.21 | 21.89 | 1.42 | 31.54 | 1.08 |
| BorMF | 16.44 | 23.90 | 1.38 | 23.46 | 0.80 |
| BoENF | 27.01 | 23.77 | 1.38 | 38.76 | 1.32 |
| BoDNF | 20.08 | 25.42 | 1.35 | 26.76 | 0.91 |
| All | 10.33 | 25.17 | 1.36 | 13.93 | 0.48 |

A Kamolphat, 2016

## Can JULES simulate this phenomenon? Yes, but..




Diurnal time course of JULES-simulated and observed leaf temperatures in a tropical dry woodland

## Canopy $T$ from future simulations by HadGEM2



N Dong, B Stocker, unpublished

## Issues and future developments

- Why does the simple model work?
- How can leaves maintain a negative sensible heat flux (especially in a closed forest)?
- $\Delta T$ as a potential benchmark for $g_{s}$ responses to temperature and vpd
- In-canopy measurements needed to assess influence of leaf size, leaf form, wind speed on $\Delta T$


## Conclusions

- Biophysical homoeostasis keeps leaves within a narrower temperature range than the air.
- This phenomenon is important for maintaining optimal leaf function.
- The mechanisms are only partly understood.
- Heat-stress vulnerability of tropical forests: need to model canopy T (well) - otherwise we may overestimate vulnerability.

