Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling

N Dong, A Kamolphat, B Gallego-Elvira, SP Harrison, LM Mercado, CM Taylor, QH Song, YP Zhang, IC Prentice

Department of Biological Sciences, Macquarie University, ning.dong@students.mq.edu.au

Theory

 In steady state, net radiation (R_n) is balanced by the combined sensible and latent heat fluxes:

 $R_{\rm n} - c_{\rm p}g_{\rm b}\Delta T - \lambda E = 0$ (1) leading (via the Penman linearization) to the classical energy balance equation:

 $\Delta T = (R_{\rm n} - \lambda g \bullet D) / c_{\rm p} (g_{\rm b} + \varepsilon g \bullet)$ (2)

 Leaves have a small heat capacity, so they track the steady state (time scale ≈1 min)

Theory

• A simple approximation:

 $\lambda E = (1 + \omega) [s/(s + \gamma)] R_n \qquad (3)$

leads to a simplified equation:

 $\Delta T = R_n \{ 1 - (1 + \omega) [s/(s + \gamma)] \} / c_p g_b \quad (4)$

- Δ*T* decreases with increasing temperature
- ΔT < 0 above ≈ 30°C ('crossover temperature')

Background

- Transpirational cooling
- Crossover temperature

More observations of ΔT

Michaeletz et al. (2015) TREE

Crossover observed at leaf level

N Dong et al., in revision

Crossover observed by canopy monitoring

N Dong et al., in revision

Global pattern of *∆T* using MODIS LST

Monthly average ΔT in July 2013

Crossover observed in MODIS LST

SMA Regression of ΔT vs T_a in All Forest Tpes

Prediction of ΔT with the simple model (temperate deciduous forest)

Observed vs Predicted ΔT in Temperate Deciduous Broadleaf Forests using R_n and T_a

Prediction of ΔT with the simple model (boreal forest)

Observed vs Predicted ΔT in Boreal Evergreen Needleleaf Forests using R_{ni} and T_a

Key quantities can be inferred

• Crossover temperature: Cr, $\alpha_0 = 1 + \omega$, and g_{b_r}

 $k:c_pg_b$ inferred from MODIS LST and WFDEI data

Forest type	Predicted k	Observed Cr temp. (°C)	Observed α_0	Observed k	Inferred g_H
TroBF	7.60	27.27	1.32	9.31	0.32
WaTBF	12.01	25.61	1.35	15.87	0.54
WaTMF	16.34	27.62	1.32	19.72	0.67
TeDBF	12.00	25.36	1.35	16.03	0.55
TemMF	20.44	23.62	1.39	29.52	1.01
TeENF	20.21	21.89	1.42	31.54	1.08
BorMF	16.44	23.90	1.38	23.46	0.80
BoENF	27.01	23.77	1.38	38.76	1.32
BoDNF	20.08	25.42	1.35	26.76	0.91
All	10.33	25.17	1.36	13.93	0.48

Can JULES simulate this phenomenon? Yes, but..

Diurnal time course of JULES-simulated and observed leaf temperatures in a tropical dry woodland

N Dong et al., in revision

Canopy T from future simulations by HadGEM2

N Dong, B Stocker, unpublished

Issues and future developments

- Why does the simple model work?
- How can leaves maintain a negative sensible heat flux (especially in a closed forest)?
- ΔT as a potential benchmark for g_s responses to temperature and vpd
- In-canopy measurements needed to assess influence of leaf size, leaf form, wind speed on ΔT

Conclusions

- Biophysical homoeostasis keeps leaves within a narrower temperature range than the air.
- This phenomenon is important for maintaining optimal leaf function.
- The mechanisms are only partly understood.
- Heat-stress vulnerability of tropical forests: need to model canopy T (well) – otherwise we may overestimate vulnerability.