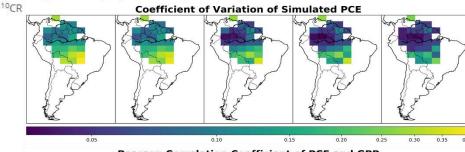
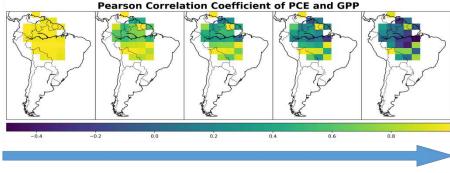

Non-structural carbohydrates and the variability of global carbon fluxes

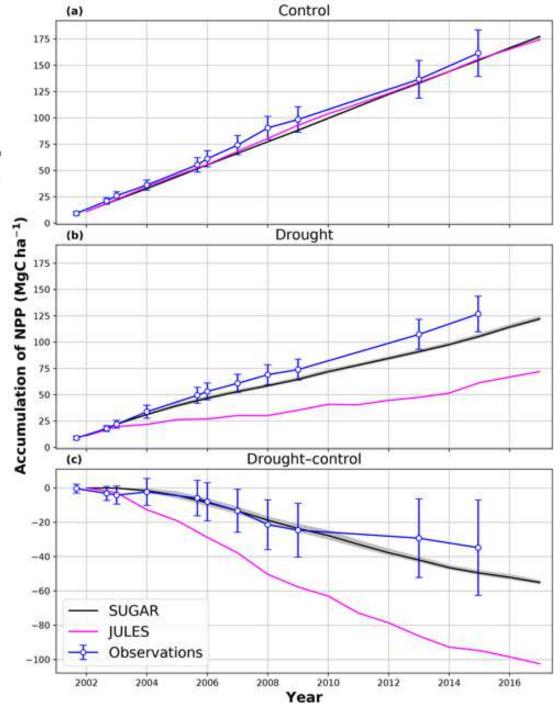
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Mike O'Sullivan, and Anna B. Harper

What are Non-structural carbohydrates?

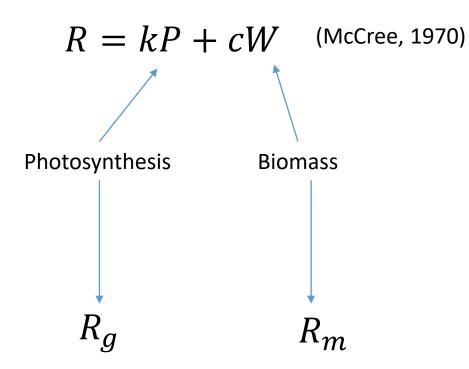

The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to


drought Received: 19 Nov 2019 - Discussion started: 28 Nov 2019 - Revised: 04 May 2020 - Accepted: 30 May 2020 - Published: 10 Jul 2020

Simon Jones¹, Lucy Rowland², Peter Cox¹₀, Deborah Hemming³, Andy Wiltshire³, Karina Williams^{3,4}, Nicholas C. Parazoo⁵,


Junjie Liu⁵, Antonio C. L. da Costa⁶, Patrick Meir^{7,8}, Maurizio Mencuccini^{9,10}, and Anna B. Harper¹

- ¹College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
- ²College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
- ³Met Office Hadley Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UK
- ⁴Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter, Devon EX4 4QE, UK ⁵California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
- ⁶Instituto de Geosciencias, Universidade Federal do Para, Belem, Brazil
- ⁷Research School of Biology, Australian National University, Canberra ACT 2601, Australia
- ⁸School of Geosciences, University of Edinburgh, Edinburgh, Lothian EH9 3FF, UK
- 9ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain


Carbohydrate Content

Aims:

- To investigate the role of NSC at a global scale and across inter-annual time-scales
- Assess the role that NSC has in determining respiration rates in relation to the Growth-Maintenance Respiration Paradigm

The growth-maintenance respiration paradigm

 R depends on productivity and biomass

=> Two distinct components

Model	Maintenance Respiration		Growth Respiration	Reference
CLASS-CTEM	$\begin{aligned} R_{m_L} &= s_L V_m f_{25} \left(Q_{10} \right) f_{par} \\ R_{m_i} &= 2.64 \times 10^{-6} s_i l_{v,i} C_i f_{25} \left(Q_{10} \right) \end{aligned}$		$R_g = \epsilon_g max \{0, GPP - R_m\}$ where:	(Melton and Arora, 2016)
	where:		$\epsilon_g = 0.15$	
	i = S, R (stem or root) $l_{v,i} =$ live fraction of stem or root	$s_i =$ base respiration rate (constant) $V_m =$ maximum catalytic capacity of rubsico		
	$C_i = \text{stem or root carbon mass}$	$f_{par} = \frac{1}{k_n} \left(1.0 - e^{-k_n LAI} \right)$		
LPJ-GUESS	$R_{m,t} = 0.0548r \frac{C_t}{cton_t} exp\left[308.58\left(\frac{1}{56.02} - \frac{1}{T - 45.87}\right)\right]$		$R_g = 0.25(GPP - R_m)$	(Smith et al., 2001, 2014)
	where:			
	t = tissue type	$cton_t = C-N$ mass ratio of tissue t		
-	r = PFT-specific coefficient $C_t = carbon$ content of tissue t	T = ambient temperature		_
JULES-ES	$R_{p_{\rm m}} = 0.12 R_{d_e} \left(\beta + \frac{N_r + N_s}{N_l}\right)$		$R_{pg} = r_g (GPP - R_{pm})$	(Clark et al., 2011)
	where:		where:	
	R_{d_c} = dark respiration β is a soil moisture stress factor	N_i for $i = l, s, r$ are the nitrogen contents of leaves, stem and root respectively	$r_{g} = 0.25$	
ISAM	$R_{m_i} = k_i \frac{C_i}{CN_i} g(T)$		$R_g = max\{0, r_g(GPP - R_m)\}$	(Song et al., 2013)
	where:		where:	
2	i = leaf, stem, root $C_i = \text{carbon content of component i}$ $k_i = \text{maintenance coefficient at 20° °C for component i}$	$CN_i = C:N$ ratio of component i T = Temperature	$r_{g} = 0.25$	

An alternative perspective

PRIMARY RESEARCH ARTICLE

Plant respiration: Controlled by photosynthesis or biomass?

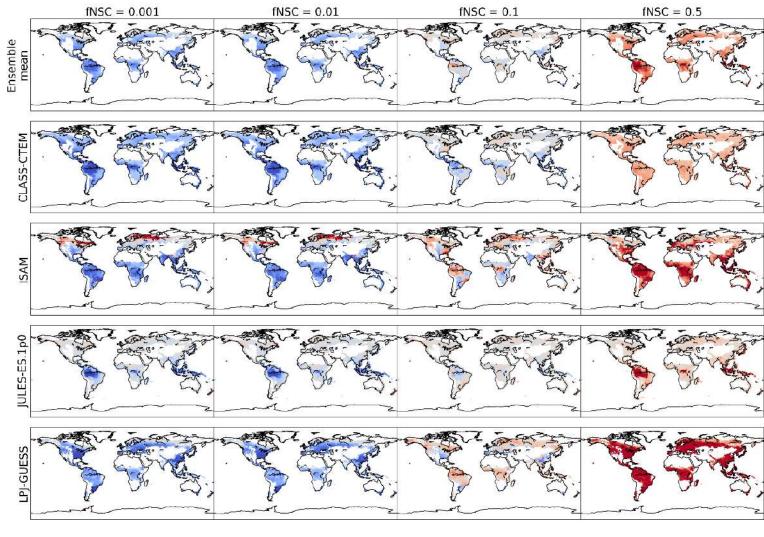
Alessio Collalti 🔀, Mark G. Tjoelker, Günter Hoch, Annikki Mäkelä, Gabriele Guidolotti, Mary Heskel, Giai Petit, Michael G. Ryan, Giovanna Battipaglia, Giorgio Matteucci, Iain Colin Prentice,

First published: 03 October 2019 | https://doi.org/10.1111/gcb.14857 | Citations: 15

Plant growth and respiration re-visited: https://doi.or published: I maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative d

John H. M. Thornley 🐱

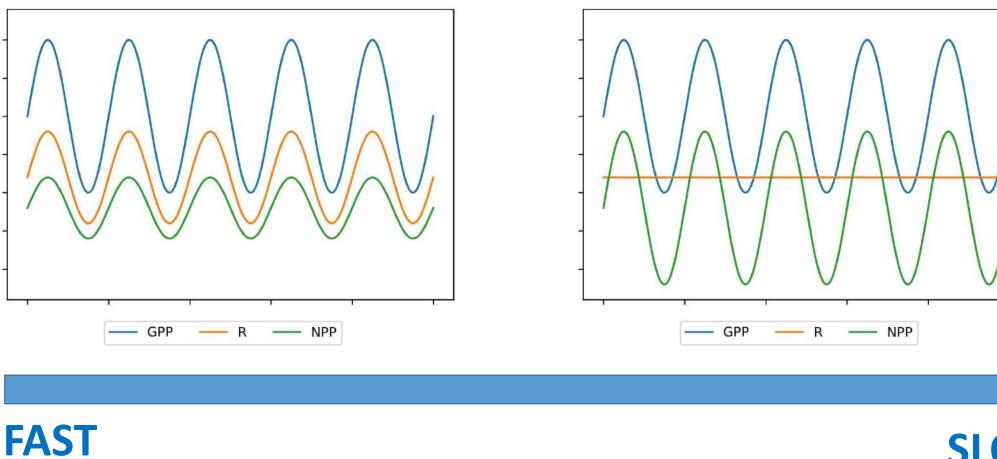
Annals of Botany, Volume 108, Issue 7, November 2011, Pages 1365–1380, https://doi.org/10.1093/aob/mcr238 Published: 26 September 2011 Article history • Is NPP proportional to GPP? Waring's hypothesis 20 years on A Collalti X, I C Prentice


Tree Physiology, Volume 39, Issue 8, August 2019, Pages 1473–1483, https://doi.org/10.1093/treephys/tpz034 Published: 17 May 2019 Article history ▼

Methods

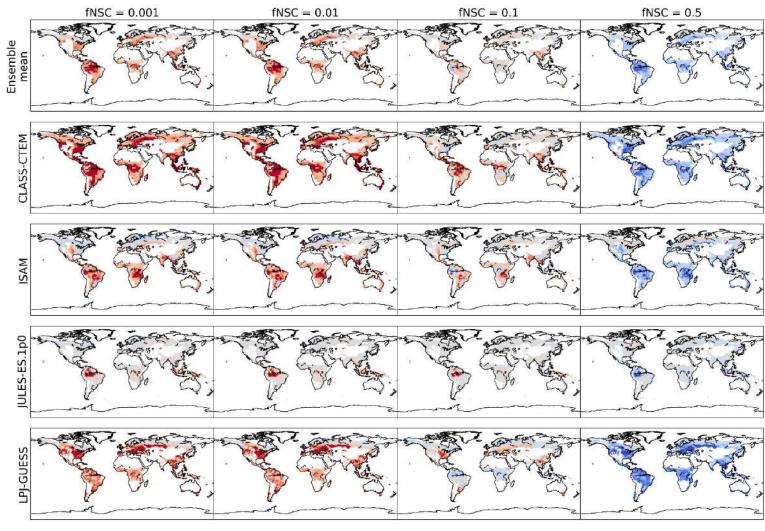
- 1. Pass GPP, Ra, Biomass outputs from CLASS-CTEM, ISAM, LPJ-GUESS, JULES (TRENDY v.8) through SUGAR
- 2. Assess changes to variability of NPP
- Repeat for different NSC turnover rates

Results


–75 –50 –25 0 25 50 75 Δ**Variance(NPP) (%)**

- Fast NSC turnover:
 - Decrease in NPP variability

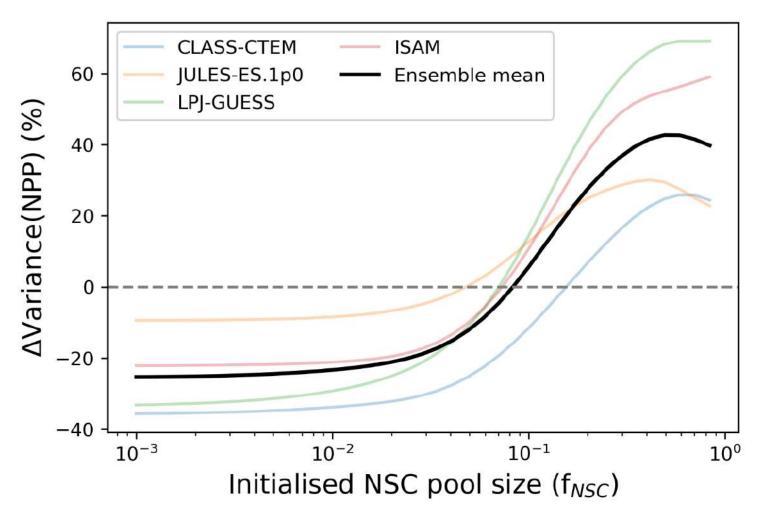
• Slow NSC turnover:


• Increase in NPP variability

Covariance of GPP and Ra

SLOW

Results


–100 –50 0 50 100 Δ**Covariance(GPP,Ra) (%)**

- Fast NSC turnover:
 - R is controlled by GPP

• Slow NSC turnover:

R is controlled by biomass and temperature

Results

Model	[NSC]: Δvar(NPP)=0
CLASS-CTEM	15.6%
JULES-ES.1p0	4.8%
LPJ-GUESS	7.06%
ISAM	7.35%

Ecosystem	Estimate	Reference
Tropical forest	8%	Wurth (2005)
Temperate forest	4%	Furze (2019)

Thanks for listening!