

NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

# European carbon sink strength reduced by plant ozone damage: from pre-industrial to future



### Rebecca Oliver<sup>1</sup>, Lina Mercado<sup>1,2</sup>, Stephen Sitch<sup>2</sup> <sup>1</sup>Centre for Ecology and Hydrology, UK <sup>2</sup>University of Exeter, UK









NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk



Industry and vegetation

### Introduction

### **Ground level ozone formation**

Nitrogen oxides NO<sub>x</sub>



• Tropospheric ozone is a globally abundant and increasing air pollutant

Secondary air pollutant formed by photochemical reactions with other air pollutants

Rising background concentrations due to hemispheric transport

A global problem





NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk



www.nasa.gov.uk

## Introduction





Leaves & canopy Visible leaf injury Altered leaf senescence Altered leaf chemical composition



Plant growth Altered reproduction

Altered crop quality

Belowground processes Altered litter production & decomposition Altered soil carbon & nutrient cycling Altered soil fauna & microbial communities

### Effects of Ozone Exposure

### Leaf metabolism & physiology

 Antioxidant metabolism up-regulated Decreased photosynthesis Decreased stomatal conductance or sluggish stomatal response

# Decreased biomass accumulation Altered carbon allocation









enquiries@ceh.ac.uk WWW.Ceh.ac.uk

# et al., (2007)

## Using observed dose-response relationships derived from latest field data (CLRTAP Mapping Manual (2011), Karlsson et al., (2007))

# • Two Parameters: *i) F*o3crit – critical threshold *ii)* a – fractional reduction of photosynthesis Both are plant functional type (PFT) specific • 5 PFTs in JULES (broadleaf tree, needle-leaf tree, C3 grass, C4 grass,

# shrub)

## High and low plant ozone sensitivity

### Methods: Re-calibration of JULES for ozone damage

### Ozone damage in JULES modelled using flux-gradient approach of Sitch









### •Alternative stomatal conductance (gs) parameterization

 $g_s = 1.6RT_l \frac{A_{net}\beta}{c_a - c_i}$ 

### Advantages of Medlyn gs model: i) More realistic gs response to VPD ii) Single parameter iii) Easier to parameterise (Lin et al., 2015)

### Methods: Stomatal conductance model



### Belinda Medlyn *et al.*, (2011) optimal stomatal model











## Methods: Model experiment

### • Factorial suite of model experiments to investigate the temporal and spatial evolution of ozone impacts on European vegetation from 1901 to 2050: MAM Pre O3 (ppb): Trees



### Ozone forcing: regional annual average (EMEP)



### MAM Cur O3 (ppb): Trees



MAM Future O3 (ppb): Trees







NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

### Medlyn less conservative water use strategy BT and C3 grass Medlyn more conservative water use strategy NT, C4 grass and shrub $\bullet$



### **Results: Impact of gs model formulation**

![](_page_6_Picture_8.jpeg)

![](_page_6_Picture_10.jpeg)

![](_page_7_Picture_0.jpeg)

**Centre for Ecology & Hydrology** NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

### Potential gains in terrestrial carbon sequestration from CO<sub>2</sub> fertilisation partially offset by concurrent rises in tropospheric ozone

### \_and carbon storage: -6 to -10 %

![](_page_7_Figure_5.jpeg)

GPP : -8 to -13 %

99

![](_page_7_Figure_7.jpeg)

### **Results: 1901 to 2050**

### GPP; High sensitivity

![](_page_7_Picture_11.jpeg)

![](_page_7_Figure_12.jpeg)

![](_page_7_Figure_14.jpeg)

![](_page_7_Picture_15.jpeg)

# 2050

### Larger impacts for temperate Europe compared to boreal and Mediterranean regions

![](_page_8_Figure_2.jpeg)

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

![](_page_8_Picture_4.jpeg)

**Centre for** Ecology & Hydrology

## **Results: 1901 to 2050**

### In many areas of temperate Europe, carbon stocks remain significantly reduced by

### NERC SCIENCE OF THE ENVIRONMENT

![](_page_9_Picture_0.jpeg)

Centre for **Ecology & Hydrology** NATURAL ENVIRONMENT RESEARCH COUNCI

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

![](_page_9_Picture_7.jpeg)

### • O<sub>3</sub> significantly compromises the European land carbon sink into the future

interaction with atmospheric  $CO_2$ 

land carbon sink, and climate-carbon feedbacks

•  $O_3$  damage is a missing component of carbon cycle assessments, needs greater consideration in Earth system models

### • Modelled terrestrial carbon dynamics sensitive to tropospheric $O_3$ and its

# • Effects of $O_3$ on plant physiology add to uncertainty of future trends in the

![](_page_9_Picture_15.jpeg)

![](_page_10_Picture_0.jpeg)

**Centre for** Ecology & Hydrology enquiries@ceh.ac.uk WWW.Ceh.ac.uk

- Vegetation. www.icpmapping.org.
- *Plant, Cell & Environment,* **18**, 339-355.
- Nature Climate Change, 5, 459-464.

### References

Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. *Nature*, **448**, 791-794.

Clrtap (2011) Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends: Chapter III Mapping Critical Levels for

• Karlsson PE, Braun S, Broadmeadow M et al. (2007) Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts. *Environmental Pollution*, **146**, 608-616.

• Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants.

Medlyn BE, Duursma RA, Eamus D et al. (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17, 2134-2144.

• Lin Y-S, Medlyn BE, Duursma RA et al. (2015) Optimal stomatal behaviour around the world.

![](_page_10_Picture_21.jpeg)

![](_page_11_Picture_0.jpeg)

NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

![](_page_11_Figure_5.jpeg)

### Methods: Re-calibration of JULES for ozone damage

### a – fractional reduction of photosynthesis

### Fo3crit – critical threshold above which damage

![](_page_11_Picture_9.jpeg)