

Estimation of Carbon Cycle Parameters in JULES

David Pearson, Chris D. Jones, John K. Hughes

JULES Science Meeting, January 2009

Abstract/Summary

- We are improving the terrestrial carbon cycle parameters in JULES by tuning them so we can simulate flux tower measurements.
- The tuning method is variational data assimilation.
- The usual formulation of Var is not applicable.
- A different weighting of prior and observation terms is needed.

This presentation covers the following areas

- Data assimilation: states or parameters?
- Data assimilation: sequential or variational?
- Var: the cost function.
- Var for parameter estimation.
- Weighting for the correlated problem.
- Results.
- What next?
- Q and A.

Data assimilation: states or parameters?

Data assimilation: states or parameters?

- The state of a system is the set of relevant or interesting evolving variables. E.g.:
 - the CO₂ concentration field in the atmosphere;
 - the salinity field in the ocean;
 - the velocity field in either;
 - the moisture content in soil layers.
- Parameters are the fixed numbers in a model, that control the state. E.g.:
 - k_{sat} in soil;
 - q_{10} in soil or leaves.

• Sequential, e.g. the Kalman filter.

• Variational, e.g. 4D-Var.

- State vectors:
 - Sequential DA naturally accommodates model error;
 - Sequential DA does not naturally accommodate nonlinearity.
 - Var does not naturally accommodate model error;
 - Var naturally accommodates nonlinearity.
- Parameters:
 - Parameters are fixed, but sequential DA allows them to change;
 - Parameter-Var has fixed parameters;
 - JULES is more suited to variational parameter estimation than sequential estimation.

For parameter estimation in JULES, Var beats sequential

Var: the cost function.

Var for parameter estimation.

$$J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_b) + \frac{1}{2} \sum_i [\mathbf{y}_i - H(\mathbf{x}_i)]^T \mathbf{R}^{-1} [\mathbf{y}_i - H(\mathbf{x}_i)]$$

$$J(\mathbf{p}) = \frac{1}{2}(\mathbf{p} - \mathbf{p}_b)^T \mathbf{B}^{-1}(\mathbf{p} - \mathbf{p}_b) + \frac{1}{2} \sum_i [\mathbf{y}_i - H(\mathbf{x}_i)]^T \mathbf{R}^{-1}[\mathbf{y}_i - H(\mathbf{x}_i)]$$

Var for parameter estimation.

- Q. Can we really do this?
- A1. State estimation theory [Jazwinski (1970)] can be manipulated to give a (nearly) identical parameter estimation theory.
- A2. "It just works", i.e. it is rational even if it is not optimal.
- A3. Equivalent least-squares problem.

$$\begin{split} J(\mathbf{p}) = & \frac{1}{2} (\mathbf{p} - \mathbf{p}_b)^T \mathbf{B}^{-1} (\mathbf{p} - \mathbf{p}_b) + \frac{1}{2} \sum_i [\mathbf{y}_i - H(\mathbf{x}_i)]^T \mathbf{R}^{-1} [\mathbf{y}_i - H(\mathbf{x}_i)] \\ & \text{A. Jazwinski, "Stochastic Processes and Filtering Theory" Chapter 5} \\ & \text{(1970)} \end{split}$$

- We want to optimise the terrestrial carbon cycle.
- Q. Which set of parameters do we work with?
- A1. Start with a set already studied [Booth (2009)];
- A2. Choose a few more;
- A3. Sensitivity analysis to find which subset had a strong effect on annual carbon pools and the timing and amplitude of seasonality.

[B. Booth et al., *Increased importance of terrestrial carbon cycle feedbacks under global warming.* Submitted to Nature (2009).]

T_{low} and T_{upp}	Maximum and minimum temperature constraints on
	photosynthesis. These were covaried. [°C]
dQ _{crit}	Critical humidity deficit for photosynthesis. [kg water / kg air]
f_0	Controller of stomatal carbon dioxide concentration. [unitless]
LAI _{min}	Minimum leaf area for vegetation areal expansion. [unitless]
n ₁₀	Top leaf nitrogen concentration . [kg N / kg C]
q _{10,leaf}	Base for leaves in q ₁₀ model of respiration. [unitless]
q _{10,soil}	Base for soil in q ₁₀ model of respiration. [unitless]
α	Soil albedo. [unitless]
g _{grow}	Rate of leaf growth. [/360 days]
groot	Turnover rate for root biomass. [/360 days]
gwood	Turnover rate for woody biomass. [/360 days]

$$J(\mathbf{p}) = \frac{1}{2}(\mathbf{p} - \mathbf{p}_b)^T \mathbf{B}^{-1}(\mathbf{p} - \mathbf{p}_b) + \frac{1}{2} \sum_i [\mathbf{y}_i - H(\mathbf{x}_i)]^T \mathbf{R}^{-1}[\mathbf{y}_i - H(\mathbf{x}_i)]$$

•
$$\mathbf{p} = (T_{low}, dQ_{crit}, f_0, n_{l0}, q_{10.leaf}, q_{10.soil})$$

- Find p that minimises J(p) by the Nelder-Mead method over the 6-dimensional parameter space.
- Target functions: daily $\rm R_{eco},\,GPP$ and NEE over as many years as are available.
- (Note: NEE = -NEP)

• Hyytiala: "standard" parameters

• Hyytiala: "best" parameters

• Hyytiala: "best" parameters ...but ...

• ... the cost is completely dominated by the observations.

- Var derivation assumes the system is 1^{st} -order Markov: $\mathbf{x}_{k+1} = f(\mathbf{x}_k) + \mathbf{e}_k$.
- OK for NWP and other autonomous systems.
- Not correct for systems driven by seriallycorrelated phenomena (e.g. the land surface is driven by weather and radiation).
- Correlated inputs → correlated outputs, containing less information.
- Therefore we should give less weight to observation terms.
- But how much?

• Numerical experiment: weight prior and obs terms by chosen factors:

$$\begin{aligned} & \text{Multiply by B.fac} & \text{Multiply by R.fac} \\ & J(\mathbf{p}) = \frac{1}{2} (\mathbf{p} - \mathbf{p}_b)^T \mathbf{B}^{-1} (\mathbf{p} - \mathbf{p}_b) + \frac{1}{2} \sum_i [\mathbf{y}_i - H(\mathbf{x}_i)]^T \mathbf{R}^{-1} [\mathbf{y}_i - H(\mathbf{x}_i)] \end{aligned}$$

- R.fac is small.
- Only the ratio is important.

• What happens when we vary the weights?

• What happens when we vary the weights?

- Changes in the relative weights cause changes in the results (of course!).
- The changes are systematic (good!)
- What are the best weights? (Difficult problem!)

- Michalak et al., Maximum likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions. JGR 110, D24107 (2005).
- NWP experience of correlated obs errors.
- Least-squares parameter estimation for time series.

Met Office • Hyytiala, Finland: NL forest

Results

• Vaira Ranch, CA: grazed C3 grass

• Fort Peck, Montana: mixed C3/C4 grass

- Resolve the weighting problem.
- Gather more flux tower data over different PFTs.
- Take advantage of "JULES-TAF" (discussed by Tim Jupp in this session) for faster convergence.
- Examine the response of large-area carbon cycles (e.g. Europe or World).

Questions and answers

Abstract/Summary

- We are improving the terrestrial carbon cycle parameters in JULES by tuning them so we can simulate flux tower measurements.
- The tuning method is variational data assimilation.
- The usual formulation of Var is not applicable.
- A different weighting of prior and observation terms is needed.

Spare Slides

f 0 and dqcrit
Met Office
Hadley Centre
$$\left\{\frac{c_i - \Gamma}{c_c - \Gamma}\right\} = F_0 \left\{1 - \frac{D_*}{D_c}\right\}$$

- c_i is the internal partial pressure of CO₂
- c_a is the external partial pressure of CO₂
- Γ is the photorespiration compensation point
- F₀ is a tuning parameter
- D_* is the humidity deficit at the leaf's surface
- D_c is a tuning parameter