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• Most elements of current LSMs rest on shaky scientific foundations.

• Result: key outcomes, e.g. temperature and CO2 responses of GPP, 

differ among models.

• New foundations are being constructed for ‘next-generation’ models.

Immediate challenges: 

 separation of different ecophysiological time scales

 ‘closing the loop’ between GPP and fAPAR

 compatibility with existing infrastructure (next-generation JULES?)

A change of strategy



• Continuously varying traits will replace PFTs

• Acclimation and adaptation of traits will be central – trait values will 

be predicted, not prescribed

• Explicit theoretical basis for predictions (optimality hypotheses)

• Beyond benchmarking – greatly expanded use of data (including 

atmospheric measurements, trait data, remote sensing products...) 

during model development

What next-generation models will look like



• ci:ca ratio (Wang et al. 2017 Nature Plants)

• Altitude effects on photosynthesis (Wang et al. 2017 New Phytologist)

• GPP (Wang et al. 2017 Nature Plants)

• Leaf N (Dong et al. 2017 Biogeosciences)

• Vcmax (Togashi et al. 2018 Biogeosciences; NG Smith et al., Ecology 

Letters in revision)

• Jmax:Vcmax ratio (Wang et al. 2017 Nature Plants)

• Rdark (H Wang et al., submitted to Ecology Letters)

• LMA and leaf lifespan (H Wang et al., in prep.)

• Leaf-to-air ΔT (A Kamolphat et al., in prep.)

• Recent GPP trends (Cai et al., in prep.)

Successful prediction of traits and rates 
(at leaf to canopy scales)



Global leaf δ13C data => logit (χ)

predicted fitted

temperature (K) 0.054 0.052 ± 0.006

ln vpd –0.5 –0.55   ± 0.06

elevation (km) –0.08 –0.11   ± 0.03

Wang et al. 2017 Nature Plants
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Effect of 2000 m altitude shift compared to data 
by Körner & Diemer (1987) Functional Ecology



Monthly GPP 
(from eddy covariance flux towers)

φ0 =  0.085 
from literature

c* =  0.41 
from experiments

β = 146 
from δ13C data

Wang et al. 2017
Nature Plants
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Comparison with seasonal cycles of GPP



M Balzarolo et al. (in revision)

Terra-P validation sites: flux data (black), model (red, blue)



Comparison with Ainsworth & Long’s (2005) meta-analysis of FACE 

experiments (≈ 200 ppm CO2 enhancement):

Other satellite-based models, e.g. the widely used MODIS GPP, do not 

show any of these responses.

Comparison with experimental CO2 effects

meta-analysis model

Light use efficiency 12.2 ± 9 % 15.2 %

Water use efficiency 54.3  ± 17 % 55 %

Stomatal conductance –20.0      ± 3 % –15.0 %

Wang et al. 2017 Nature Plants



Leaf N (ln Narea ) across Australia

predicted fitted

χ (from δ13C) –0.62 –0.61   ± 0.25

ln PAR 1 0.87   ± 0.10

mean annual T –0.048 –0.047 ± 0.007

Dong et al. (2017) Biogeosciences



Narea from LMA (left) and predicted Vcmax (right) N. Dong et al.: Leaf nitrogen from first pr inciples 487
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Figure 3. Partial residual plots for the linear regression of Narea as a function of independently predicted values of Nrubisco and Nstructure

(all in gm− 2) at species level. Blue: N-fixers; red: non-N-fixers.

Table2. Linear regression coefficients for community-mean (simpleaverage) valuesof ln Narea (gm− 2) asafunction of ci : ca (from δ13C),

ln (mean canopy PAR, I L ) (µmol m− 2 s− 1), MAT (◦ ), and ln LMA (gm− 2).

Estimated Predicted p Relative R2

importance

ci : ca − 1.60± 0.94 − 0.615 n.s. 42%

82%
ln I L 0.70± 0.23 1 < 0.001 20%

MAT − 0.035± 0.016 − 0.048 < 0.001 11%

ln LMA 0.57± 0.19 n/a < 0.001 27%

n.s.: no significance. n/a: not applicable.

ity to theslope for LMA isconsistent with the importance of

variations in structural N in determining total N.

4 Discussion

4.1 Leaf N and environment

The variety of environments provided in this study by the

long transcontinental transect, and the number of species

sampled, allowed us to statistically separate the effects of

ci : ca, irradiance, temperature, and LMA on Narea. The re-

lationships with ci : ca, irradiance, and temperature were in

thedirections and magnitudes predicted by theco-ordination

hypothesis. The relationship with site mean irradiance had a

slope as predicted by the co-ordination hypothesis (i.e. close

to 1), but a strong relationship, with a steeper slope as ex-

pected, was found when top-of-canopy irradiance was used

instead of thecanopy mean– indicating that both spatial vari-

ations and within-canopy shading were contributing to the

relationship with site mean irradiance. We performed an ad-

ditional regression using leaf nitrogen content per unit mass

(Nmass) which showed, as expected, identical fitted coeffi-

cients for all predictorsexcept LMA (Appendix B). However,

because of the regression coefficient of ln Narea with respect

to ln LMA < 1, the regression coefficient of ln Nmass with

respect to ln LMA < 0, i.e. Nmass, declines with increasing

LMA – as has been widely reported. We also tried a regres-

sion of Nmass on the same set of predictors but without the

inclusion of LMA; this yielded a much poorer fit and is not

shown.

High Narea in plants from arid environments has been de-

scribed often, and has traditionally been explained as a con-

sequence of high N supply in environments with low rain-

fall (reducing leaching losses) and restricted plant cover (re-

ducing total vegetation N demand) (e.g. Field and Mooney,

1986). This explanation would imply that plants in wetter

environments have lower (and suboptimal) Narea due to low

availability of N. However, the negative relationship com-

monly found between ci : ca and Narea supports an alterna-

tive, adaptive (plant-centred) explanation. The least-cost hy-

pothesis (Wright et al., 2003; Prentice et al., 2014) predicts

lower ci : ca in drier environments. This is because the drier

the atmosphere, the greater theflux of water required to sup-

port a given rate of assimilation, which in turn shifts the bal-

ance of costs and benefits towards investment in photosyn-

thetic capacity (Vcmax) and away from water transport capac-

ity. When ci : ca is lower, the co-ordination hypothesis pre-

dicts that a higher Vcmax (and therefore higher Narea) will be

optimal, in order for the leaves to fully utilize the available

light. Theco-ordination hypothesis also predicts afurther in-

www.biogeosciences.net/14/481/2017/ Biogeosciences, 14, 481–495, 2017

Dong et al. (2017) Biogeosciences
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Seasonal acclimation of Vcmax

(repeat measurements on the same plants:
Great Western Woodlands, Australia)

Togashi et al. (2018) Biogeosciences



Vcmax around the world

NG Smith et al.
in revision



H Wang et al. (unpublished results)

Jmax:Vcmax ratios (experimental data)
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(not an enzyme kinetic response)



Leaf lifespan (LL) and LMA:
examples from GlopNet sites

Predicted responses from combined Kikuzawa-Xu-Wang model
Wang et al. in prep.
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A Kamolphat et al. in prep. (collaboration with CEH: Gallego-Elvira, Mercado, Oliver, Taylor)

Canopy versus air temperature
(‘biophysical homoeostasis’)



Data-model comparison of recent GPP changes

W. Cai et al. (in prep.)

BE-Vie FR-Pue Fr-LBr

TREND

VARIATION



Modelled global GPP trend, 1982–2016

W. Cai et al. (in prep.)

4.5 ± 0.6%/yr from COS
(Campbell et al. 2017 Nature)

6.3 ± 0.5%/yr from model
(W. Cai et al. in prep.)



• Vcmax[gt] and Jmax[gt] vary according to a 15-day running mean, 

optimized to average conditions (acclimation)

• Instantaneous Vcmax and Jmax follow enzyme kinetics

• χ varies instantaneously, optimized to current conditions (stomatal 

regulation)

• Assimilation follows the Farquhar model, A = min(AC, AJ)

• Case study at BE-Vie

Separation of time scales



Time-varying Vcmax

G Mengoli
in prep.



Time-varying Jmax

G Mengoli
in prep.



Time varying Ac & AJ

phi0 = 0.093

G Mengoli
in prep.



Time varying GPPp & GPPo

G Mengoli
in prep.



• I have focused on some of the most fundamental processes affecting 

land-atmosphere carbon and water exchanges.

• Most of what I have shown is not in any of the JULES ‘lego bricks’.

• Traits that vary (adaptively) in time and space are held constant in 

JULES.

• Cool leaves (ΔT < 0) in daytime: never simulated anywhere by JULES.

• These issues are not confined to JULES. They are probably common to 

all current LSMs!

• What are we going to do about it?

Concluding remarks


