

Assimilating canopy reflectance into an ecosystem model

Tristan Quaife

DALEC – ecosystem model

Ensemble Kalman Filter

$A^{a} = A + A'A'^{T}H^{T}(HA'A'^{T}H^{T} + R_{e})^{-1}(D - HA)$

- *H* = observation operator
- **A** = state vector ensemble
- A' = state vector ensemble mean state vector
- **D** = observation ensemble
- R_e = observation error covariance matrix

Assimilating products

Assimilating reflectance

EnKF – augmented analysis

$A^{a} = A + A'\hat{A}'^{T}\hat{H}^{T}(\hat{H}\hat{A}'\hat{A}'^{T}\hat{H}^{T} + R_{e})^{-1}(D - \hat{H}\hat{A})$

 \hat{H} = augmented observation operator \hat{A} = augmented state vector ensemble

 $\hat{A} = h(A)$

h contains a canopy reflectance model

Simple observation operator

Observation operator - GORT

Canopy foliage results

Integrated flux predictions

Flux (gC.m ⁻²)	Assimilated data	3yr total	Standard Deviation
NEP	No assimilation	240.2	212.2
	MODIS B1 & B2	373.0	151.3
	Williams et al. (2005)	406.0	27.8
GPP	No assimilation	1646.4	834.5
	MODIS B1 & B2	2620.3	96.8
	Williams et al. (2005)	2170.3	18.1

Mean NEP for 2000-2002

Snow albedo model

GORT + snow

Canopy foliage results

Integrated flux predictions

Flux (gC.m ⁻²)	Assimilated data	Total	Standard Deviation
NEP	Assimilation exc. snow	373.0	151.3
	Assimilation inc. snow	404.8	129.6
	Williams et al. (2005)	406.0	27.8
GPP	Assimilation exc. snow	2620.3	96.8
	Assimilation inc. snow	2525.6	42.7
	Williams et al. (2005)	2170.3	18.1

Current work

- ASTER (15m) & MODIS (500m)

Improving ecosystem representation

Understorey vegetation

Complexity of GORT >> complexity of DALEC

DA of EO data into JULES?

- EnKF provides a practical way forward for data assimilation into JULES.
- Technique can be applied to other observations types and other parts of JULES.

- Definition of Observation Operator is key
 - Must be general and fast
 - Two stream approach (Pinty et al.)
 - Transform data?

Oregon "young" field site

Manzanita

Modelled vs. observed reflectance

Band 2

Canopy foliage results

Canopy foliage results

