

JULES- Plant Physiology

Stephen Sitch, Josh Fisher, Federica Pacifico, Lina Mercado, Richard Ellis, Doug Clark, David Galbraith, Chris Huntingford, Chris Jones, Sandy Harrison, Peter Cox, Olivier Boucher, Nicolas Bellouin, Patricia Cadule, Pierre Friedlingstein et al.

Terrestrial Nitrogen Cycle

Competition between Microbes and Plants for Mineral N: For C-sequestration want N in the plants

Fixation & Uptake of Nitrogen (FUN)

Fisher et al., GBC submitted

Fixation & Uptake of Nitrogen (FUN)

Fisher et al., GBC submitted

Fixation & Uptake of Nitrogen (FUN)

Fisher et al., GBC submitted

Modelling Land Trace-Gas Exchange

Arneth, Sitch, Bondeau et al., GCB submitted

Biogenic Isoprene Emission for Air Quality & Climate

Pacifico, Harrison, Jones et al., in prep

Modelling Biogenic Isoprene Emissions

Process-based model for isoprene emission [Arneth et al., 2007]

Assumes that all isoprene emitted from the leaves has been synthesized in chloroplasts via the DXP pathway and that a certain proportion of electrons absorbed by leaves is going to isoprene synthesis.

$$I = \varepsilon_s \frac{(A+R_d)}{7} f_T \cdot f_{CO_2}$$

I isoprene emission (mgC/m²/h)

A **net pho**tosynthesis rate (mol/m²/h)

 R_d respiration rate (mol/m²/h)

$$\varepsilon_{s} = \frac{7 \cdot I_{s}}{A_{s} + R_{ds}}$$
 electron fraction used for isoprene production (PFT dependent) (mgC/mol)

 $f_T = \exp(a_T(T - T_S))$ temperature factor, a_T is an empirical parameter equal to 0.1

 $f_{CO2} = \frac{CO_{2S}}{CO_2}$ atmospheric CO₂ concentration factor Figure 6

--s indicates standard conditions, T=30°C and PPFD=1000 μ mol/m²/s

Useful for future projections, as it's mechanistic

Pacifico, Harrison, Jones et al., in prep

Modelling Evaluation of Isoprene Emissions

Pacifico, Harrison, Jones et al., in prep

Plant Ozone Injury

Costs associated with reduction in crop yields: USA = US\$2-4 billion (Murphy et al. 1999) Europe = 4 billion EU (Holland et al. 2002)

Plant – Ozone - Water Interactions

Hydrological Cycle

TOTAL RUNOFF LOW, x10^12 m3/yr			29.3787
TOTAL RUNOFF HIGH, x10^12 m3/yr			30.0169
% Change (190	1-1995) in Rl	JNOFF	
HIGH			
X(CO2)	2.2		
X(O3)	5.6		
X(O3CO2)	7.5		
LOW			
X(CO2)	2.6		
X(O3)	2.7		
X(O3CO2)	5.0		
% change (190	1-1995) in GS	6	
HIGH			
X(CO2)	-4.3	_	
X(O3)	-7.3		
X(O3CO2)	-10.4	•	From a
LOW		•	% chai
X(CO2)	-4.6	•	% chai
X(O3)	-4.6	•	% chai
X(O3CO2)	-8.4	-	

- From a recent meta-analysis by Wittig, Ainsworth & Long, 2007:
- % change in Gs ambient o3 vs charcoal filtered (zero o3) = -13%
- % change in Gs elevated o3 vs charcoal filtered (zero o3) = -10%
- % change in Gs ambient o3 vs elevated o3

= -6%

Global Dimming & Brightening

Decrease in surface radiation (1950-1980)

Stanhill and Cohen 2001, Liepert 2002, Wild et al 2005

Subsequent increase radiation (1980-2000) Wild et al 2005, 2007

Linked to changes in cloudiness & anthropogenic aerosol emissions

Volcanic eruptions El Chichón 1982 and Pinatubo 1991

Mercado et al., Nature, 2009

Counteracting effects of changes in Radiation on Plant Photosynthesis

Increase (scattering) aerosols/clouds

Decrease radiation surface

Increase diffuse fraction

Decrease photosynthesis

Enhancement of photosynthesis

Mercado et al., Nature, 2009

Contributions to Global Land Sink

Diffeseper Galfonniesianzanionrover whether as expected

Mercado et al., Nature, 2009

Seasonal cycle at different Monitoring stations

Cadule et al., GBC submitted Met Office

Regional Strategy to Evaluate models

Cadule et al., GBC submitted Met Office

CO₂ Transport Modelling

Seasonal Cycle

Cadule et al., GBC submitted Met Office

Improved SC (HadGEM2)

Transferring Parameterizations from HadGEM2 to JULES v2 (In progress - R. Ellis, D. Clark, CEH, Wallingford)

Ecophysiology at high temperatures

Courtesy D. Galbraith

Summary

 ✓ Implementing into JULES state-of-the-art representations of: Plant Nitrogen Cycle (FUN) (J. Fisher et al.,)
(<u>N-Deposition; Future C sinks; Climate Stabilization & Mitigation</u>)

✓ Progress in mechanistically modelling non-CO₂ trace gas exchanges:

Isoprene, (F. Pacifico et al.,) (<u>Biofuels</u>) Plant O_3 – water relations (Food Security)

 ✓ Implementation of diffuse/direct radiation into JULES (L. Mercado et al.,) (Food Security, Geoengineering)

✓ Global Calibration of JULES (R. Ellis, D. Clark et al.,)

 ✓ Identified Ecophysiology at high temperatures (J. Lloyd et al.) (Tipping points)

