Constraining JULES phenology using MODIS data - an evaluation at multiple FLUXNET sites

Darren Slevin
University of Edinburgh
Supervisors: Simon Tett \& Mat Williams

20 June, 2013

Can satellite phenology improve C flux estimates?

Importance of phenology

- Realistic representation important in GCMs
- Strongly connected to biosphere-atmosphere exchange
- Affect timing, phase and magnitude of Net Ecosystem Exchange (NEE) of CO_{2} between land and atmosphere
- Leaf Area Index (LAI) is key biophysical variable

JULES Phenology

(a) Morgan Monroe State Forest

(b) Harvard Forest

Leaf Area Index

- MODIS Collection 5 LAI (MOD15A2)
- MODIS LAI first taken in late Feb. 2000
- Data covers $7 \times 7 \mathrm{~km}$ of field site
- Obs every 8 days

Harvard Forest

- Deciduous broadleaf forest
- Climate: Temperate

Model captures timing of budburst and phenology (with MODIS LAI) quite well.

Morgan Monroe

- Deciduous broadleaf forest
- Climate: Temperate

MODIS LAI underestimated, maybe due to atmospheric conditions.

Tumbarumba

- Wet temperate sclerophyll (New South Wales)
- LAI ~2.5 at ground-level

MODIS LAI overestimated and noisy.

Hyytiala

- Evergreen Needleleaf Forest
- LAI ~2.62 at ground-level

Problem with end of season phenology.

Vaira Ranch

- Grassland (California)
- Climate: Mediterranean

MODIS LAI improves GPP.

Annual GPP

Conclusions

- Slight improvements in GPP
- Depends on quality of MODIS data
- Improves beginning/end of growing season
- Model gets it right when using maximum MODIS LAI

