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SEVER-FIRE model: Conceptual scheme
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Simulation of fire weather risk
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Reg_FIRM Fire weather danger index 
(Venevsky,et.al, 2002)
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Comparison of Canadian FDWI, 
Nesterov Index and Reg-FIRM index
using MODOS data for Siberia

Canadian FDWI (T(°C), Rh(%), wind 
speed(km/h), rain (mm))

Nesterov Index (Tair(°C), Tdew(°C), rain
(mm))

Reg-FIRM (Tair(°C) max,min and soil moisture
S(m3/m3)) Tmin used for approximation of 
Tdew(°C).

Data: MODIS active fire data 8-days for years
2002-2005
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Resulting correlations 

R2=0.44

R2=0.38

R2=0.42

R2=0.37
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Importance of thaw/freeze processes

Yakutia,
North-Eastern
Siberia

Messages for JULES fire activities:

1. Fire weather indexes have similar quality for 
description of fires

2. They work better for vegetation types, they were 
tuned for

3. Thaw/freeze processes are important for fire 
dynamics in boreal zone
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Simulation of ignitions
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Lightning ignitions: conceptual scheme
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Comparison with on-ground data
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Human induced ignitions: conceptual scheme
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Comparison with on-ground data

0
2000
4000

6000
8000

10000
12000

14000
16000
18000

1975 1980 1985 1990 1995

Number of human fires, Spain Observed



© Crown copyright 2004 Page 13

Turn into this?1000
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Total averaged for 1971-2002 annual fire emissions 3581 TgC (3530 TgC for 1997-2001,van der Werf et.al, 2004)

Simulated global carbon fire emission
during 1981-2002 (human and lightning cases)
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Conclusions from the offline exercise – road
to online study (Earth system modeling) 

1. Human fires emissions (~2.2 GtC) exceed lightning ones with ratio 2 /1, 
Lightning fires emissions, however, play significant role despite of 
their realtively small number of lightning fires (5% from total global 
number of fires).

2. Human fires emissions have increasing trend during last twenty years. 
Lightning fire emissions do not show such a trend

3. During El Niño event 1997-1998 human induced fire emissions 
significantly increased, while lightning induced fire emissions varied 
as usually

4. The emission anomaly during  El Niño event for human fires are 
highest in tropics: North Eastern Brazil, Southern Africa, South East 
Asia, but also is high in North Eastern Siberia and Central Canada

5. The anomaly for lightning fires is dispersed equally, with exception of 
peaks in Jakutia (North Eastern Siberia), Candian Rockies and Papua 
New Guinea

Messages for JULES fire activities:

1. Lightning ignitions can be simulated using 
environmental data, which are already in JULES

2. Human ignitions can be simulated using additional 
socio-economic data

3. Human ignitions are very important for description of 
recent fire emissions
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Simulation of fire spread and emissions
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Fire spread and emissions: 
conceptual scheme
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Comparison with global MODIS data
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Closer look at some regions
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Closer look at some regions
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Messages for JULES fire activities:

1. Areas burnt and emissions can be 
estimated realistically if number and location 
of fires are known

2. Smoldering peat fires in tropics should be 
described and included in a model
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THANK YOU !

Messages for future JULES fire activities:

Fire weather indexes have similar quality for description of 
fires
They work better for vegetation types, they were tuned for
Thaw/freeze processes are important for fire dynamics in 
boreal zone
Lightning ignitions can be simulated using environmental data, 
which are already in JULES
Human ignitions can be simulated using additional socio-
economic data
Human ignitions are very important for description of recent 
fire emissions
Areas burnt and emissions can be estimated realistically if 
number and location of fires are known
Smoldering peat fires in tropics should be described and 

included in a model


