Principles of soil water and heat transfer in JULES

Anne Verhoef¹, Pier Luigi Vidale², Raquel Garcia-Gonzalez^{1,2}, and Marie-Estelle Demory²

1. Soil Research Centre, Reading (UK); 2. NCAS-Climate, Reading (UK)

Jules soils meeting, 12-13 January 2011

Overview of presentation

- Summary of theory
 - Calculation of water and heat flow
 - Parameterisation of water retention curve
 - Parameterisation of thermal soil properties
 - Importance of texture maps
- Examples of some research in this area

JULES Schematic

Schematic of JULES model (Blyth et al.; 2006)

Jules soils meeting, 12-13 January 2011

JULES Soil hydrology and thermodynamics

Within-soil transfer

How does JULES simulate soil hydrology and heat transfer ?

Some models consider coupled heat and water movement in

the soil

$$\underbrace{C_A}\Delta z_n \frac{dT_n}{dt} = G_{n-1} - G_n - J_n \Delta z_n - \begin{bmatrix} G = \lambda \frac{\partial T}{\partial z} & \text{Diffusive flux,} \\ Fourier's law \\ J = \underbrace{C_w}W \frac{\partial T}{\partial z} & \text{Advective flux} \end{bmatrix}$$

Apparent volumetric heat capacity

Jules soils meeting, 12-13 January 2011

Recent addition of vapour transport..

Due to soil water potential (isothermal) and thermal gradients...

$$C_{h,n} \frac{\partial \psi_n}{\partial t} = \frac{\partial}{\partial z} \left(\begin{pmatrix} K_n + D_{\psi,v,n} \end{pmatrix} \frac{\partial \psi_n}{\partial z} + D_{T,v,v} \frac{\partial T_n}{\partial z} - K_n \right) - \frac{E_n}{\rho_w \Delta z_n}$$

Isothermal vapour conductivity Thermal vapour diffusivity
$$C_A \frac{\partial T_n}{\partial t} = \frac{\partial}{\partial z} \left[\lambda_n \frac{\partial T_n}{\partial z} + \rho_w L D_{\psi,v,n} \frac{\partial \psi_n}{\partial z} \right] - c_w W \frac{\partial T_n}{\partial z}$$

These gradients will induce soil moisture transport and affect soil moisture distribution, which in turn will affect heat flow

Jules soils meeting, 12-13 January 2011

Water retention curve

How tightly is water held in the soil?

Soil moisture content, θ (%)

How do we get Ψ and K ??

Clapp & Hornberger (1978):

$$\boldsymbol{\psi} = \boldsymbol{\psi}_{s} \left(\boldsymbol{\theta} / \boldsymbol{\theta}_{s}\right)^{-b}$$

$$K = K_s \left(\theta / \theta_s \right)^{2b+3}$$

Soil texture	f_{sand} (%)	$f_{ m silt}(\%)$	$f_{ m clay}(\%)$	
Loamy sand	82	12	6	
Loam	43	39	18	
Clay	22	20	58	

How do we get Ψ and K $\ref{eq: W}$ and K $\ref{eq: W}$

Van Genuchten (1981):

$$\psi = \frac{\left(\Theta^{-1/m} - 1\right)^{1/n}}{\alpha} \qquad \qquad K = K_s \frac{\left[1 - \left(\alpha\psi\right)^{n-1} \left\{1 + \left(\alpha\psi\right)^n\right\}^{-m}\right]^2}{\left[1 + \left(\alpha\psi\right)^n\right]^{m/2}}$$

$$\Theta = \frac{\theta - \theta_r}{\theta_s - \theta_r}$$

$$m=1-\frac{1}{n}$$

When using van Genuchten soil hydraulics, the UM/JULES only stores the free soil water $\theta \cdot \theta_r$ and uses the approximation $\Theta = \frac{\theta - \theta_r}{\theta_s - \theta_r}$

Soil Hydraulic parameters

Clapp and Hornberger parameters

Soil texture	b	$\theta_{\rm s}$	ψ_s	QC	K_s	
	(-)	$(m^3 m^{-3})$	(m)	(-)	(cm/min)	
Sand	4.05	0.395	-0.121	0.92	1.056	
Loamy sand	4.38	0.410	-0.090	0.82	0.938	
Sandy loam	4.90	0.435	-0.218	0.60	0.208	
Silt loam	5.30	0.485	-0.786	0.25	0.0432	
Loam	5.39	0.451	-0.478	0.40	0.0417	
Sandy clay loam	7.12	0.420	-0.299	0.60	0.0378	
Silty clay loam	7.75	0.477	-0.356	0.10	0.0102	
Clay loam	8.52	0.476	-0.630	0.35	0.0147	
Sandy clay	10.40	0.426	-0.153	0.52	0.013	
Silty clay	10.40	0.492	-0.490	0.52	0.013	
Clay	11.40	0.482	-0.405	0.25	0.0062	

Pedotransfer functions

Cosby pedotransfer functions (PTFs)

based on MLRA (multiple linear regression analysis)
 dependent on percentages of sand, silt and clay

Ψ

K

$$b = 3.1 + 0.157 f_{clay} - 0.003 f_{sand}$$

$$\theta_s = (50.5 - 0.142 f_{sand} - 0.037 f_{clay}) / 100$$

$$s = 0.01e^{1.54 - 0.0095 f_{sand} + 0.0063 f_{silt}}$$

$$\psi_s = 0.01 \times 10^{1.54 - 0.0095 f_{sand} + 0.0063 f_{silt}}$$

$$k_s = a \times e^{-0.6 - 0.0064 f_{clay} + 0.0126 f_{sand}}$$

$$K_s = a \times 10^{-0.6 - 0.0064 f_{clay} + 0.0126 f_{sand}}$$

Pedotransfer functions

Van Genuchten pedotransfer functions (PTFs)

Wosten et al. (1999) Geoderma 90, 169-185

Table 5

Continuous pedotransfer functions for the prediction of hydraulic properties

$$\begin{split} & \theta_{\rm s} = 0.7919 + 0.001691^{*}C - 0.29619^{*}D - 0.000001491^{*}S^{2} + 0.0000821^{*}{\rm OM}^{2} + 0.02427^{*}C^{-1} + 0.01113^{*}S^{-1} \\ & + 0.01472^{*}\ln(S) - 0.0000733^{*}{\rm OM}^{*}C - 0.000619^{*}D^{*}C - 0.001183^{*}D^{*}{\rm OM} - 0.0001664^{*}{\rm topsoil}^{*}S \\ & (R^{2} = 76\%) \\ & \alpha^{*} = -14.96 + 0.03135^{*}C + 0.0351^{*}S + 0.646^{*}{\rm OM} + 15.29^{*}D - 0.192^{*}{\rm topsoil} - 4.671^{*}D^{2} - 0.000781^{*}C^{2} \\ & - 0.00687^{*}{\rm OM}^{2} + 0.0449^{*}{\rm OM}^{-1} + 0.0663^{*}\ln(S) + 0.1482^{*}\ln({\rm OM}) - 0.04546^{*}D^{*}S - 0.4852^{*}D^{*}{\rm OM} + 0.00673^{*}{\rm topsoil}^{*}C \\ & (R^{2} = 20\%) \\ & n^{*} = -25.23 - 0.02195^{*}C + 0.0074^{*}S - 0.1940^{*}{\rm OM} + 45.5^{*}D - 7.24^{*}D^{2} + 0.0003658^{*}C^{2} + 0.002885^{*}{\rm OM}^{2} - 12.81^{*}D^{-1} \\ & - 0.1524^{*}S^{-1} - 0.01958^{*}{\rm OM}^{-1} - 0.2876^{*}\ln(S) - 0.0709^{*}\ln({\rm OM}) - 44.6^{*}\ln(D) - 0.02264^{*}D^{*}C + 0.0896^{*}D^{*}{\rm OM} + 0.00718^{*}{\rm topsoil}^{*}C \\ & (R^{2} = 54\%) \\ & l^{*} = 0.0202 + 0.0006193^{*}C^{2} - 0.001136^{*}{\rm OM}^{2} - 0.2316^{*}\ln({\rm OM}) - 0.03544^{*}D^{*}C + 0.00283^{*}D^{*}S + 0.0488^{*}D^{*}{\rm OM} \\ & (R^{2} = 12\%) \\ & K_{s}^{*} = 7.755 + 0.0352^{*}S + 0.93^{*}{\rm topsoil} - 0.967^{*}D^{2} - 0.000484^{*}C^{2} - 0.000322^{*}S^{2} + 0.001^{*}S^{-1} - 0.0748^{*}{\rm OM}^{-1} \\ & -0.643^{*}\ln(S) - 0.01398^{*}D^{*}C - 0.1673^{*}D^{*}{\rm OM} + 0.02986^{*}{\rm topsoil}^{*}C - 0.03305^{*}{\rm topsoil}^{*}S \\ & (R^{2} = 19\%) \end{aligned}$$

 θ_s is a model parameter, α^* , n^* , l^* and K_s^* are transformed model parameters in the Mualem-van Genuchten equations; C = percentage clay (i.e., percentage < 2 μ m); S = percentage silt (i.e., percentage between 2 μ m and 50 μ m); OM = percentage organic matter; D = bulk density; topsoil and subsoil are qualitative variables having the value of 1 or 0; and ln = natural logarithm.

Global soils distribution, effect of soil map

IGBP-DIS map has a higher resolution than Wilson-Henderson- Sellers map and retains more heterogeneity in soil types.

Importance of using the right PTFs

JULES soil physical parameters

Symbol	JULES code				
VG CH	variable	description			
$1/\alpha \Psi_s$	SATHH	van Genuchten/Clapp & Hornberger model parameter (m)			
1/(n-1) b	B_EXP	van Genuchten/Clapp & Hornberger model parameter (dimensionless)			
\mathbf{C}_{dry}	HCAP	Heat capacity of dry soil (J K ⁻¹ m ⁻³)			
λ_{dry}	HCON	Thermal conductivity of dry soil (W m ⁻¹ K ⁻¹)			
K _s	KS	Saturated hydraulic conductivity (kg/m²/s)			
θ_{c} - θ_{r}	V_CRIT	Volumetric soil water content above which stomata are not sensitive to soil water (m ³ H ₂ O/m ³ soil)			
θ_{s} - θ_{r}	V_SAT	Volumetric soil water content at saturation ($m^3 H_2O/m^3$ soil)			
$\theta_{w}\text{-}\theta_{r}$	V_WILT	Volumetric soil water content below which stomata will close fully (m ³ H ₂ O/m ³ soil)			

Table 3.	The	oarameters	of the	JULES	soil	hydrolog	y and	thermod	ynamic	modules
----------	-----	------------	--------	-------	------	----------	-------	---------	--------	---------

Original table courtesy of Jon Finch

Role of key moisture contents

Thermal conductivity parameterisation

Original JULES model

$$\lambda = (\lambda_{sat} - \lambda_{dry}) \left(\frac{\theta}{\theta_s}\right) + \lambda_{dry}$$

Lu et al. model

$$\lambda = (\lambda_{sat} - \lambda_{dry}) K_e + \lambda_{dry}$$

$$K_{\rm e} = \exp\left\{\alpha \left[1 - \left(\frac{\theta}{\theta_s}\right)^{\alpha - 1.33}\right]\right\}$$

Theoretical background

Thermal soil property values of soil components at 10 °C

	<i>C</i> _h MJ m⁻³ K⁻¹	λ W m⁻¹ K⁻¹
quartz	2.0	8.8
clay minerals	2.0	2.9
organic matter	2.5	0.25
water	4.2	0.57
ice (0 °C)	1.9	2.18
air (saturated with water vapou	ır) 0.0013	0.025

Thermal conductivity JULES versus Lu et al.

Jules soils meeting, 12-13 January 2011

Theoretical background

Standard soils: Cosby et al. (1986), thermal conductivity

Theoretical background

Standard soils: Cosby et al. (1986), heat capacity

Timeseries comparison

Jules soils meeting, 12-13 January 2011

PADS COLAY GES

Timeseries comparison

Jules soils meeting, 12-13 January 2011

Timeseries comparison

Jules soils meeting, 12-13 January 2011

HadGAM1 AGCM runs, soil temperature

Average JJA Soil temperature difference (deg C)

Layer 1 (0-0.10 m)

Average DJF Soil temperature difference (deg C)

Layer 4 (2.0-3.0 m)

HadGAM1 AGCM runs, soil moisture content

Average JJA Soil moisture difference (mm)

Layer 1 (0-0.10 m)

Layer 4 (2.0-3.0 m)

Average DJF Soil moisture difference (mm)

Layer 1 (0-0.10 m)

Layer 4 (2.0-3.0 m)

Reduction of UM 2m Temp cold bias

Temperature (Kelvin) at Station Height: Surface Obs Northern Hemisphere (CBS area 90N-20N) (land points only) Equalized and Meaned from 27/11/2006 12Z to 31/12/2006 12Z Coses: + sehte X X seht C-Obs Mean Error -1.0

Figure 7: Bias in UM forecasts of screen temperature from the pre-operational winter trials. Both trials are run at a resolution of N216L50, use 3D-VAR atmospheric data assimilation and PS15 model parametrisations. The control (red curve - sehte) uses the old soil physical properties. The test (blue curve - sehtf) uses the new soil hydraulic and thermal properties. The new soil physical properties reduce the UM winter cold bias by about 0.6 K.

UKMO R&D Technical report 528, 2009.

New soil physical properties implemented in the Unified Model at PS18 by Dharssi et al.

Reduction of UM winter 2m Temp RMSE

Figure 8: RMS errors in UM forecasts of screen temperature from the pre-operational winter trials. The control (red curve - sehte) uses the old soil physical properties, the test (blue curve - sehtf) uses the new soil hydraulic and thermal properties. The new soil physical properties reduce RMS errors by about 10%.

Final remarks

Other processes that require further testing/development

- Infiltration
- Parameterisation of groundwater table
- Within/below canopy aerodynamic transfer
- Soil gas transfer