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The philosophy of data assimilation

• Observations and models contain useful 
information about the target system

• But ALL observations and models are subject 
to error - and may be subject to bias

• Models and observations can be combined to 
optimise information and quantify errors



Improving estimates of land surface process
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Approaches to data assimilation

• Sequential (predictor-corrector)



The Kalman Filter
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The Ensemble Kalman Filter
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Observations – Ponderosa Pine, OR (Bev Law)
Flux tower (2000-2)
Sap flow
Soil/stem/leaf respiration
LAI, stem, root biomass
Litter fall measurements
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Time (days since 1 Jan 2000) Williams et al (2005)
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Approaches to data assimilation

• Sequential (predictor-corrector)
• Inversion techniques

– Monte Carlo 
– Adjoint



Monte Carlo Inversion
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Assimilating 30 minute flux data



Bayesian calibration
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REgional Flux Estimation eXperiment (REFLEX)

• To compare the strengths and weaknesses of 
various MDF/DA techniques 

• To quantify errors and biases introduced when 
extrapolating fluxes

• www.carbonfusion.org



REgional Flux Estimation eXperiment (REFLEX)
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REgional Flux Estimation eXperiment (REFLEX)
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Scaling



A multiscale approach
 

www.abacus-ipy.org



Process models
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Linking fluxes to atmospheric [CO2]

Figure by Paul Parrish, data from J Moncrieff & J Grace



The Orbiting Carbon Observatory (OCO)

Approach: 
• Collect spatially resolved, high resolution 

spectroscopic observations of CO2 and 
O2 absorption in reflected sunlight

• Use these data to resolve spatial and 
temporal variations in the column 
averaged CO2 dry air mole fraction, XCO2
over the sunlit hemisphere

• Employ independent calibration and 
validation approaches to produce XCO2
estimates with random errors and biases 
no larger than 1 - 2 ppm (0.3 - 0.5%) on 
regional scales at monthly intervals

OCO will acquire the space-based data needed 
to identify CO2 sources and sinks and quantify 
their variability over the seasonal cycle

Source: David Crisp, JPL



Spanning measurement scales

OCO will make precise global measurements of XCO2 over the range of 
scales needed to monitor CO2 fluxes on regional to continental scales.
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A strategy for JULES?

• LOCAL: DA for local parameter PDFs, process 
testing, C-water interactions, full state 
descriptions. FluxNet, IPSL, NCAR, ACCESS.

• REGIONAL: upscaling, coupling to/inverting 
atmospheric data/models. CarboEurope, 
ABACUS.

• GLOBAL: Global assimilation with optical, CO2, 
water, temperature remote sensing, flasks. 
NCEO & CCDAS.
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