

Effects of biogenic emissions on atmospheric composition

Paul Young

Centre for **Atmospheric Science**, University of Cambridge, UK

JULES Meeting, Exeter, 28-29th June 2007

Outline

- 1. Why biogenic VOCs?
- 2. BVOCs and atmospheric chemistry
- 3. Future (?) BVOC emissions
 - The experiment
 - Some results
 - Some conclusions & caveats
- 4. Where next? (JULES)

Why are we interested?

~ 1000 Tg C yr⁻¹

Why are we interested?

May be highly reactive \rightarrow large contribution to O_3 chem

Oxidation products important globally

Ethene, acetone, methane (?), terpenes (isoprene, α pinene, β caryophylene

Role in organic aerosol formation

T, light, H₂O, CO₂, species, nutrients

Chemistry 101 – Tropospheric ozone

based on a diagram by Oliver Wild

Climate-chemistry links

Atmospheric chemistry

Increasing isoprene emissions in a pessimistic (A2) future

The experiment (a)

Increase isoprene to a 2100 (2xCO₂) level using Guenther *et al.* [1995] algorithms and HadCM3 surf temperature output*

 Just consider potential isoprene response to temperature (e.g. no vegetation shifts)

*∆T ~ 4K

Isoprene emissions

Isoprene emissions / Tg month⁻¹ (non-linear scale!)

The experiment (b)

• Experiment matrix

	"Anthro."*	Isoprene	Climate
BASE	2000	2000	2000
ISOP	2000	2100	2000
ANTH	2100	2000	2000
ALL	2100	2100	2000
ALLcc	2100	2100	2100

*e.g. NO_x , CO, NMHCs (all non-isoprene emissions); based on SRES A2 Scenario

ANTH - BASE

Tropospheric methane lifetime [Yr avg]

Impact of OH changes...

Conclusions & Caveats

Isoprene changes are important for atmospheric composition [Sanderson *et al.*, 2003; Hauglustaine *et al.*, 2005; Steiner *et al.*, 2006; Wiedinmyer *et al.*, 2006]

Conclusions & Caveats

Isoprene changes are important for atmospheric composition [Sanderson *et al.*, 2003; Hauglustaine *et al.*, 2005; Steiner *et al.*, 2006; Wiedinmyer *et al.*, 2006]

Impact is heterogeneous and complex: balance of HO_x and NO_y changes; depend on chemical characteristics of the region \rightarrow sensitive to future emission estimates

Conclusions & Caveats

Soprene changes are important for atmospheric composition [Sanderson *et al.*, 2003; Hauglustaine *et al.*, 2005; Steiner et al., 2006; Wiedinmyer et al., 2006]

We Impact is heterogeneous and complex: balance of HO_x and NO_v changes; depend on chemical characteristics of the region \rightarrow sensitive to future emission estimates

But models obviously over-simplify the problem: chemistry, canopy processes, sub-grid scale phenomena, vegetation-climate feedbacks, etc. etc.

Where next?

- Conducting model study using emissions estimated from LPJ-GUESS [Arneth *et al.*, 2007]
- Comparison with results from Juliette et al.'s work with JULES ('ensemble chemistry/emissions')
- ...If isoprene CO₂-effect counteracts T effect, changes in land use become important

Tropospheric OH [Yr avg]

ALL versus ANTH

