

Evaluation of the CHESS data within JULES for UK Environmental Prediction

×102

Heather Ashton JULES Meeting, 1st July 2015

Outline

- Purpose of the evaluation
- CHESS, WFDEI & observations
- Evaluation studies
 - Daily
 - 3 hourly
 - Single site
- Key conclusions
- Future plans

UKEP - UK Environmental Prediction

Purpose

- 1. Aims:
 - To extend, test and implement new hydrological capabilities into JULES in a fully coupled system.
 - To provide realistic simulations of river discharge into the oceans and represent feedbacks to the atmosphere.
- 2. The CHESS dataset is required to drive JULES for offline evaluation of the hydrological components.
- 3. It is essential to evaluate the CHESS dataset for this purpose, especially the disaggregator.

What is CHESS?

- Climate Hydrology Ecology Support System
- 30 year (1961 2013), daily 1km UK forcing dataset.

Compare

WFDFI

0.5°x0.5° data

Interpolation, elevation and bias

correction of

meteorological

variables.

sequentially.

Met Office

Observations

- Met Office Land Synoptic Stations over UK
- Hourly observations.

Evaluation

- 10 years, 2002 2012.
- Mean absolute biases.
- Daily and 3 hourly means T_{air} , Q_{air} , Wind, SW down.
- Daily and 3 hourly accumulations for total precipitation.
 - Subdivided into wet, dry, false wet and missed wet days.
 - Analysis of 09hr to 09hr (daily only) and 00hr to 00hr accumulations.
- Single site analysis Cardington
 - 3 hourly biases
 - Cross spectral analysis on fluxes (Graham Weedon)

Daily Analysis

Daily Temperature & Humidity

Met Office

T _{air}	WFDFI	CHESS
Mean (K)	-0.1302	-0.0115
Std Dev	1.1431	0.6911
Skewness	0.2186	0.1844
Kurtosis	1.5971	5.9697

Q _{air}	WFDFI	CHESS
Mean (kg kg ⁻¹)	0.00005	0.00020
Std Dev	0.0005	0.0003
Skewness	-0.0165	-0.0263
Kurtosis	1.3561	2.6676

Daily Wind Speed & Downwelling Shortwave Radiation

Precipitation - timeline

- UK hydrological convention precipitation on a given day refers to accumulation between 09:00 on the day and 09:00 on the next day.
- Modelling convention (and JULES) precipitation accumulated from 00:00 to 00:00.

Daily Precipitation – Wet days

Met Office

0900 Wet	WFDE!	CHESS
Mean (kg m ⁻² s ⁻¹)	0.4488	0.0351
Std Dev	6.4431	1.3039
Skewness	-0.8132	0.7621
Kurtosis	14.7848	35.0069

Daily Precipitation – False/Missed

0900 False/Missed	WFDEI	CHESS	0000 False/Missed	WFDEI	CHESS
Mean (kg m ⁻² s ⁻¹)	1.4203	0.1471	Mean (kg m ⁻² s ⁻¹)	1.4203	0.2373
Std Dev	3.3140	1.3313	Std Dev	3.3140	4.9552
Skewness	-0.0369	2.9130	Skewness	-0.0369	-0.0926
Kurtosis	12.4863	37.2676	Kurtosis	12.4863	7.7350

3 Hourly Analysis

The JULES Disaggregator

- JULES version 4.0 and later.
- Disaggregation of daily forcing data to JULES model time steps
- Switched on using the l_daily_disagg flag in &JULES_DRIVE
- Imposes a diurnal cycle on temperature and radiation.
- Allocates the precipitation to a continuous series of model time steps within the day.
- Pressure and wind values are unchanged by the disaggregation code
- Specific humidity is kept below the specific humidity at saturation.
- Used 'out the box' settings for this evaluation work.

More details see:

Williams, Karina; Clark, Douglas. 2014. Disaggregation of daily data in JULES. Exeter, Met Office, 26pp. (Hadley Centre Technical Note 96)

3 hourly Temperature & Humidity

Skewness

Kurtosis

0.4275

2.1439

0.3776

0.7287

Met Office

air		
Mean (K)	-0.1294	-0.0114
Std Dev	1.7948	1.9790
Skewness	0.3758	-0.0942
Kurtosis	1.1706	0.3949

3 hourly Wind Speed & Downwelling Shortwave Radiation

Wind	WFDEI	CHESS	
Mean (m s ⁻¹)	0.2899	-0.3047	>
Std Dev	2.0860	2.1652	
Skewness	-0.3487	-0.5505	
Kurtosis	1.5682	1.5222	

SW Down	WFDE!	CHESS	
Mean (W m ⁻²)	6.9862	-0.8020	\rangle
Std Dev	68.3318	74.5428	
Skewness	1.5341	-0.6569	
Kurtosis	9.6768	3.8807	

3 hourly Total Precipitation – wet periods

Rain period defined as: $\geq 0.125 \text{ mm} / 3 \text{ hourly}$ period

 Comparing midnight to midnight values.

• CHESS and WFDEI have very similar numbers of wet, dry, false and missed periods.

3 hourly Total Precipitation

Met Office

Wet	WFDEI	CHESS
Mean (kg m ⁻² s ⁻¹)	1.04989	0.7106
Std Dev	1.8271	1.6388
Skewness	2.3435	3.5874
Kurtosis	11.6220	29.9125

False/Missed	WFDEI	CHESS
Mean (kg m ⁻² s ⁻¹)	0.5730	0.5480
Std Dev	0.8444	1.2164
Skewness	2.7972	2.9893
Kurtosis	22.9355	37.1549

Single Site Analysis

Single Site - Cardington

 Meteorological Research Unit, Cardington

• Comprehensive suite of surface and mast-mounted instrumentation:

- Wind and turbulence (incl. Fluxes)
- Temperature & humidity
- Radiation (incl. global incoming, diffuse, and reflected solar irradiance & incoming and outgoing long wave irradiances)
- Sub-soil sensors
- Tipping bucket rain gauge

3 hourly Temperature & Humidity

Met Office

T _{air}	WEDEI	CHESS
Mean (K)	0.0898	-0.2076
Std Dev	1.7705	2.1842
Skewness	0.5268	0.0590
Kurtosis	1.5515	0.6590

0.0015

0.0020

3 hourly Wind Speed & Downwelling Shortwave Radiation

Std Dev

Skewness

Kurtosis

13.2032

81.5894

1.0581

4.2315

0.5330

73.0194

-0.3222

2.5455

, in the second se		
Mean (m s ⁻¹)	0.7534	0.5877
Std Dev	1.3112	1.7845
Skewness	0.0989	-0.2993
Kurtosis	0.9666	0.4136

3 hourly Total Precipitation

Met Office

Time series

(Graham Weedon)

Cross Spectral Analysis JULES v4.3 "out-of-the-box" parameters at 30-min steps for 2005-2012, same Rose Suite using: Cardington observed meteorology (30 mins), CHESS (daily) and WFDEI (3 hourly) **Met Office** Latent Heat: Observed v JULES Sensible Heat: Observed v JULES Annual scale Annual scale Diurnal scale Diurnal scale 2 Amp. ratio Amp. ratio Ŧ +/-95%CI +/-95%CI 0.5 0.5 30 30 Phase (⁾ 95%Cl 1^{-+/-95}%Cl Phase (°) +/-95%Cl 15 Ŧ Ŧ -30 -30 Amplitude 1.0 1.0 ratio = Model Correlation 0.9 Correlation 0.9 Amp/Obs Amp +/-95%CI +/-95%CI + 0.8 0.8 (>1 means amplification, 0.7 0.7 obs < model) 12 50 Mean Bias Mean Bias **Phase** = Phase 8 +/-95%CI +/-95%CI 45 difference (W m⁻²) $(W m^{-2})$ 40 Negative phase 35 0 means model is 40 early compared 40 to obs, positive RMSE RMSE 36 36 $(W m^{-2})$ $(W m^{-2})$ means model is 32 32 late compared 28 28 to obs. 24 24

(Graham Weedon - to be continued later...)

Conclusions

- On the whole CHESS performs well.
- However some technical issues using CHESS with JULES
 - Precipitation accumulation period
 - Disaggregator assumptions

• This site-wise broad comparison shows little difference between CHESS and WFDEI as used in JULES.

• There may be features specific to site and variables that are not evident in the average distribution plots.

Conclusions 2

• 3 hourly analysis Cardington broadly shows the same as site wide comparisons.

• WFDEI in general is much closer to JULES run with observed data than CHESS, especially on diurnal timescales.

• Improved parameter sets should generate an improved and more realistic simulation for all three JULES runs.

Future Work

- Complete the analysis by looking at the relative impacts from individual variables.
- How can we improve the hydrological processes within JULES?
 - Improve our parameter sets (Alberto Martínez, CEH)
 - Combine JULES with a hydrology model e.g. SHETRAN (Newcastle University)

Any questions?

The JULES Disaggregator

&JULES_DRIVE

data_start = '1	961-01-01	00:00:00'
-----------------	-----------	-----------

data_end = '2014-01-01 00:00:00'

```
data_period = 86400,
```

```
l_daily_disagg = T
```

```
l_disagg_const_rh = T
```

```
precip_disagg_method = 4
```

```
diff_frac_const = 0.4
```

```
t_for_snow = 275.15
```

- t_for_con_rain = 288.15
- dur_conv_rain = 7200.0
- dur_ls_rain = 18000.0
- $dur_ls_snow = 18000.0$

Daily biases - Cardington

Daily Biases - Cardington

No. Rainfall Days - Cardington Q1HOUR_PRCTN_AMNT 2005-2012 (Using MIDAS) 2500 WFDEI CHESS Obs Total

