Representation of soil water stress in GCM simulations of vegetation physiology

P.L. Vidale, B. Sarojini, A. Verhoef JULES meeting, 2016

Do we include the right processes in simulating the EFFECTS OF SOIL WATER STRESS ON PLANT FUNCTION?

Water stress affects the CO₂ concentration at chloroplast level, C_c by:

- 1. Stomatal Conductance Limitation (SCL), reducing stomatal conductance g_s (diffusion of CO₂ and H₂O)
- 2. Mesophyll Conductance Limitation (MCL), reducing mesophyll conductance to CO_2 diffusion (g_m)

Water stress affects the biochemical capacity (BL) by:

- 3. Reducing V_{cmax} (carboxylation rate)
- 4. Reducing J_{max} (electron transport rate)

Figure 1. (a) Micrograph of the abaxial surface of an olive leaf (bottom side up), where the stomata can be seen, as well as the pathway of CO₂ from ambient (C_a) through leaf surface (C_s) and intercellular air spaces (C_i) to the chloroplast (C_c). Boundary layer conductance (g_b), stomatal conductance (g_s) and mesophyll conductance (g_m) are indicated. (b) Electron micrograph of a grapevine leaf where cell wall (cw), plasma membrane (pm), the chloroplast envelope (ce) and stroma thylakoid (st) can be observed. The pathway of CO₂ from C_i to chloroplastic CO₂ (C_c) is characterized by intercellular air space conductance to CO₂ (g_{ias}), through cell wall (g_w) and through the liquid phase inside the cell (g_{liq}). A grain of starch (s) and a plastoglobule (pg) can be also observed in the picture (photos by A. Diaz-Espejo).

GENERALISED, NEW APPROACH TO MODEL WATER STRESS

MODELS SUCH AS JULES NEGLECT DIFFUSIONAL LIMITATIONS (I.E. STOMATAL AND/OR MESOPHYLL CONDUCTANCE LIMITATIONS)

Egea et al. (2011) generalize the β relationship by introducing an **exponential dependence**, which allows for non-linear $\beta = \beta(\theta)$ functional dependencies through the exponent q_i :

Furthermore, the indices (i=S,B,M) enable three pathways (Stomatal, Biochemical, Mesophyll) for soil water stress β to affect plant function individually, or in any combination.

The generalised model limitations are thus applied to:

 $A = A_p \beta_B$ photosynthesis $g_m = g_m \beta_M$ mesophyll conductance $g_s = g_s \beta_S$ stomatal conductance

Experiments with recent version of JULES

Control and *Improved Simulations of JULES 4.4

- Study domain -- Europe including the UK (10°W -40°E, 35°N -65°N)
- Resolution 0.5° X 0.5°, Time step 30 mins
- Forcing Dataset WFDEI (Weedon et al. 2014), 3 hourly, 0.5 x 0.5 resolution, 8 atmospheric variables – SWdown, LWdown, Psurf, Qair, Tair, Windspeed, Rainfall, Snowfall
- Simulation period 1979-2012
- Spin up cycles 30 each
- * Improved soil water stress factor (beta) representations using Stomatal (SCL), Biochemical (BL) and Mesophyll (MCL) limitations and their combinations (C6)

CLIMATOLOGY

Difference in JJA climatologies w.r.t BL (CTL): SH (W/m^2) (top), Tstar (K) (bottom)

Difference in climatologies w.r.t BL (CTL): Beta (top), Transpiration Flux (bottom)

Difference in climatologies w.r.t BL (CTL): Surface Runoff (1E-8 kg/m^2/s) (top), Subsurface Runoff (1E-8 kg/m^2/s) (bottom)

RESPONSE TO THE 2003 HEAT WAVE

Latent Heat Flux (%): anomaly in 2003 ['CTL', 'BL', 'SCL', 'MCL', 'C6']

