Meteorological forcing, ancillary data and evaluation methods as sources of errors and uncertainty in JULES

Cecile Menard Finnish Meteorological Institute

With thanks to: Jaakko-Ikonen, Kimmo Rautiainen, Riika Ylitalo, Jouni Pulliainen (FMI); Richard Essery (UoEdinburgh); Graham Weedon, Matt Pryor (Met Office)

Cecile Menard Finnish Meteorological Institute

With thanks to: Jaakko-Ikonen, Kimmo Rautiainen, Riika Ylitalo, Joani Pulliainen (FMI); Richard Essery (UoEdinburgh); Graham Weedon, Matt Pryor (Met Office)

Meteorological forcing, ancillary data and evaluation methods as sources of errors and uncertainty in JULES

Cecile Menard Finnish Meteorological Institute

With thanks to: Jaakko-Ikonen, Kimmo Rautiainen, Riika Ylitalo, Jouni Pulliainen (FMI); Richard Essery (UoEdinburgh); Graham Weedon, Matt Pryor (Met Office)

JULES meeting Edinburgh 2013

A few weeks later....

How much of JULES's performance is due to poor process representation and how much to poor implementation of JULES?

Choice 1: Site

Two sites in Finnish Lapland: Clearing + Forest, 2007-2012

- Choice 2: Meteorological data
 FMI AWS, WFDEI, NCEP CFSR/CFSv2
- Choice 3: Ancillary data (LAI, snow-free albedo, canopy height, vegetation fraction)

In situ measurements, Met Office CAP

- Choice 4: Performance metrics

 uRMSE, RMSE, bias, R, σM / σO,
 variance (quantification of uncertainty
- Choice 5: Temporal scale of output Hourly, daily, monthly, seasonally
- Choice 6: JULES 3.0 to 4.1

Conclusions

- 1. JULES does not produce significant bias and the modelled amplitude and seasonality correspond well to measurements at the studied site when provided with *measured* meteorological and ancillary data.
- 2. At times, performance metrics (RMSE, R, σ_M/σ_0 , bias) of the NCEP and WFDEI members suggested that they performed well but they didn't: "right results for the wrong reasons".

Observations
 JULES run with in situ data
 Ensemble range

Menard et al. *JHM* Submitted

Conclusions

- 1. JULES does not produce significant bias and the modelled amplitude and seasonality correspond well to measurements at the studied site when provided with *measured* meteorological and ancillary data.
- 2. At times, performance metrics (RMSE, R, σ_M/σ_0 , bias) of the NCEP and WFDEI members suggested that they performed well but they didn't: "right results for the wrong reasons".
- 3. The ability of the model to reproduce the snow depth and water equivalent had a considerable effect on all of the other evaluated model outputs.
- 4. Model results significantly differed depending on the version of JULES used.

Since JULES 3.0 I_snowdepth_surf + can_model = 4

Since JULES 3.3. I_snowdepth_albedo + I_spec_albedo

Final remarks...

- JULES performs well at this site but...
- ...sometimes for the wrong reasons...
- ...only if we know how to juggle with its logical switching.
- What are the implication for
 - ➤ The JULES community?
 - > The published model results (e.g. global scale)?
 - ➤ Funding?
- Should we focus on training or a "science" manual?