A closer look at skin layer heat transfer in the surface energy balance

Anne Verhoef

Department of Geography & Environmental Science, University of Reading, UK

Acknowledgements: G.P. Balsamo, A. Beljaars, C. Bernhofer, M.Best, F. Beyrich, F. Bosveld, S. Boussetta, R. Essery, C. Heret, U. Rummel, R.Stockli, P.L. Vidale, UoR land surface group members

Energy balance in ECMWF TESSEL scheme

TESSEL: Tiled ECMWF Scheme for Surface Exchanges over Land

$$R_{n,*} = H + LE + G_{\rm sk}$$

$$G_{sk} = \Lambda_{sk} (T_{sk} - T_1)$$

A **skin temperature** T_{sk} forms the interface between the soil and the atmosphere. The **skin conductivity**, Λ_{sk} , provides the **thermal connection** between the skin level and the soil or snow deck.

The skin represents the vegetation layer, the top layer of the bare soil, or the top layer of the snow pack, has <u>no heat capacity</u> and therefore responds 'instantaneously' to changes in e.g. radiative forcing.

Depth of soil layers: 0.07, 0.21, 0.72 and 1.89 m

$\mathsf{TESSEL}\,\Lambda_{\mathsf{sk}}$ for different surface types

Table 8.2	Tile	specific	values.
-----------	------	----------	---------

Index	Tile	$\Lambda_{ m sk} \ { m unstable} \ ({ m Wm}^{-2}{ m K}^{-1})$	${f e} ~~ \Lambda_{ m sk} { m stable} \ ({ m Wm}^{-2}{ m K}^{-1})$	$f_{R_{ m s}}$	Resistance scheme
1	Open water	∞	∞	0	Potential
2	Ice water	58	58	0	Potential
3	$\begin{array}{c} \text{Interception} \\ \text{reservoir} \end{array}$	10	10	0.05	Potential
4	Low vegetation	(10)	(10)	0.05	Resistance
5	Snow on low vegetation/bare ground	7	7	0	Potential
6	High vegetation	$\Lambda_{a,u} + 5$	$\Lambda_{a,s} + 5$	0.03	Resistance
7	High vegetation with snow beneath	$\Lambda_{a,u} + 5$	$\Lambda_{a,s} + 5$	0.03	Canopy and snow resistance
8	Bare ground	15	15	0	Resistance

The resistance scheme describes the way of coupling with the atmosphere: *Potential* denotes atmospheric resistance only; *Resistance* denotes aerodynamic resistance in series with a canopy or soil resistance; *Canopy and snow resistance* denotes a canopy resistance for the vegetation and an extra aerodynamic coupling to the snow surface (see Figs 8.1–8.2 and Subsection 8.2.2). For tiles 6 and 7, $\Lambda_{a,u} = 15W \text{ m}^{-2}\text{K}^{-1}$ and $\Lambda_{a,s} = 10W \text{ m}^{-2}\text{K}^{-1}$ represent the aerodynamic coupling between the canopy and the soil in the unstable and stable cases, respectively, and the factor 5 represents the long-wave radiative exchanges. *Unstable/stable* refers to the temperature gradient between the skin layer and the top soil or snow layer.

Energy balance in JULES scheme

Depth of soil layers: 0.10, 0.25, 0.65 and 2.0 m

'Skin layer heat flux' in JULES scheme

$$G = G_v^r + G_v^a + G_s$$

The vegetation fraction is coupled to the soil using

1. radiative exchange and

- 2. atmospheric **turbulence**, whereas the soil is coupled through
- 3. conduction. These three terms are given by:

$$G_{\nu}^{r} = \varepsilon_{s} \varepsilon_{soil} \sigma T_{*}^{4} - \varepsilon_{s} \varepsilon_{soil} \sigma T_{1}^{4}$$

$$G_{\nu}^{a} = \nu \frac{\rho c_{p}}{r_{a}^{c}} (T_{*} - T_{1})$$

$$G_s = (1 - \nu)\lambda_{soil}(T_* - T_1)/\Delta z$$

Depth of soil layers: 0.10, 0.25, 0.65 and 2.0 m

Canopy storage & within-canopy transfer

Vidale & Stockli (2004)

- Canopy storage is occasionally considered in land surface models, but not in TESSEL (no capacity for skin layer). In Jules the <u>vegetation has a capacity</u>
- Within-canopy transfer is not explicitly considered in TESSEL, but approximated in JULES

Nocturnal mixing in a Boreas aspen forest subcanopy

Research questions

- Study measured G_{sk}
- How does G_{sk} vary diurnally/seasonally?
- Compare measured and modelled G_{sk}
- What processes/parameters affect G_{sk}?
- Realistic values of Λ_{sk} for different surface types?
- Is the approach developed by TESSEL/JULES adequate?
- Should Λ_{sk} really be assumed constant throughout the day for most surfaces?
- What about canopy storage and within-canopy transfer?

Multi-year, half-hourly datasets used to study G_{sk} and Λ_{sk}

Location	Falkenberg	Lindenberg	Tharandt	Cabauw
Surface type	Grass	Needleleaf forest	Needleleaf forest	Grass
Latitude	52° 10' N	52°18' N	50°58' N	51°97' N
Longitude	14° 07' E	13°95' E	13°34'E	4°93' E
Country	Germany	Germany	Germany	Netherlands
Elevation [m a.s.l.]:	73	42	380	-1
Topography	fairly flat	fairly flat	gently sloped	flat
Vegetation height (m)	< 0.20	18	26	0.1
LAI $(m^2 m^{-2})$	< 2	4	7.2	< 2
Dominant species	grass	Pine	Norway spruce	grass
Understorey	N/A	N/A	Wavy hair grass	N/A
Climate	Marine /continental	Mar. /cont.	Mediterranean/	Maritime
	(P=563)	(P=563)	montane (P=820)	(P=793)
Reference height (m)	2.4	30.0	42	1.5/5
Length of dataset	2003-2009	2003-2009	1998-2003	2003-2009

Falkenberg versus Cabauw grass: top-down G_{sk}

Falkenberg versus Cabauw grass: Λ_{sk}

Lambda_sk (W m-2 K-1)

Lindenberg versus Tharandt forest: G_{sk}

Lindenberg

Tharandt

Lindenberg versus Tharandt forest: Λ_{sk}

Lindenberg

Tharandt

Components of in-situ, bottom-up G_{sk}

 $J_{\rm H}$ and $J_{\rm E}$ are the sensible and latent heat storage fluxes in the air column below the flux measurement height, z_r , above the canopy. $J_{\rm B}$ is the heat storage flux in the above-ground biomass and $J_{\rm P}$ is the rate of energy storage by photosynthesis

Monthly averaged diurnal course G_{soil} (grass)

Falkenberg (grass)

Role of canopy storage

$$R_n - G_{soil} - G_{veg} = H + LE$$

$$G_{veg} = J_H + J_E + J_B + J_P$$

- J_A and J_E are the sensible and latent heat storage fluxes in the air column below the flux measurement height
- J_B is the heat storage flux in the **above-ground biomass**
- *J*_P is the rate of energy storage by photosynthesis.

Time (hour)

Bottom up versus top-down values of G_{sk}

- (Top-down): $G_{\rm sk} = R_{n,*} H LE$
- (Bottom-up) = $G_{sk} = G_{soil} + J_H + J_E + J_B$
- J_B requires estimates of canopy biomass (large uncertainties)

Modelled components of G_{sk} : JULES

$$G_{\nu}^{r} = \varepsilon_{s}\varepsilon_{soil}\sigma T_{*}^{4} - \varepsilon_{s}\varepsilon_{soil}\sigma T_{1}^{4}$$

$$G_{\nu}^{a} = \nu \frac{\rho c_{p}}{r_{a}^{c}}(T_{*} - T_{1})$$

$$G_{s} = (1 - \nu)\lambda_{soil}(T_{*} - T_{1})/\Delta z$$

$$r_{a}^{c} = C/u_{*}$$

$$C = 43$$

$$J_{B} = m_{veg}c_{veg}\frac{\Delta \overline{T_{B}}}{\Delta t}$$

$$J_{B} = m_{veg}c_{veg}\frac{\Delta \overline{T_{B}}}{\Delta t}$$

G_{sk}_ECMWF

Forest

- ECMWF equation (red) overestimates for forest & underestimates for grass
- $\Lambda_{\rm sk}$ is incorrect
- Taking heat storage into account improves timing, but not amplitude
- Standard G_JULES (with C=50) for grass performs better than G_ECMWF ٠

Bottom-up plus radiation and aerodynamic term of G_{sk}_JULES

Conclusions so far

- **G**_{sk} varies **diurnally and seasonally**
- G_{sk} takes up a large part of R_n (around 25%), even for a grass surface
- Λ_{sk} varies diurnally and seasonally and is a function of ustar/stability
- Counter-gradient in-canopy transfer causes negative Λ_{sk} values
- Models do quite well, but a simple Λ_{sk} is not enough
- JULES does better, but in-canopy aerodynamic transfer could be improved via e.g. a two-layer model.

Theory behind λ_{soil}

The soil thermal conductivity, λ_{soil} , depends on the soil-water content following Peters-Lidard et al. (1998) (see also Farouki, 1986; Johansen, 1975)

$$I_{soil} = (I_{sat} - I_{dry})K_e + I_{dry}$$

Standard soils: Cosby et al. (1986).

 θ / θ sat

DOY

DOY

DOY

Forest

DOY

Forest

Grass

Bulk conductance of the mulch/stagnant air layer within the vegetation

Some authors (Van der Wiel et al.; Steeneveld et al.) use the term *bulk conductance* of the mulch/stagnant air layer within the vegetation

 $\lambda_{\rm m}$ the conductance in W m⁻¹ K⁻¹ (although conductivity would be a better term), and $\delta_{\rm m}$ is the thickness of the mulch/stagnant air layer (in m).

Values for the bulk conductance between 2 and 7 W m⁻¹ K⁻¹ are reported (Duynkerke, 1991; Van de Wiel et al., 2003); however, in none of the papers is δ_m explicitly taken into account.

Falkenberg versus Cabauw grass: T_{sk} - T_1

Tsk-T1 (deg C)

Lindenberg versus Tharandt forest: T_{sk} - T_1

Lindenberg

Tharandt

History of $\Lambda_{\rm sk}$ approach

Viterbo & Beljaars (J Climate 8; 1995): a uniform value of **7 W m⁻² K⁻¹** (based on Cabauw grassland)

Van den Hurk & Beljaars (J Applied Meteorology 35; 1996):

- "Empirical effective conductivity for heat transfer through the skin layer
- For completely bare soil, Λ can be related to a physical **soil thermal conductivity**
- When a dense vegetation cover is present, the heat flow into the soil and vegetation layer will also be affected by turbulent exchange within the vegetation
- value of Λ_{sk} includes heat conductivity of the canopy elements, the air within the canopy layer and the conductivity of the topsoil layer
- Considerably different values may be expected for different types of surfaces
- Use 7 W m⁻² K⁻¹ for vegetated part of grid box and 17 W m⁻² K⁻¹ for bare soil part"

What affects 'skin layer transfer'?

- Season
- Time of day
- Type of vegetation
- Soil moisture content
- (Soil type)
- (Turbulence strength)
- (Wind speed)

Energy balance in ECMWFTESSEL scheme, 2

$$G_{sk} = \Lambda_{sk} (T_{sk} - T_1)$$

 $\Lambda_{soil} = \lambda_{soil}/z_{soil,1}$

$$\Lambda_{sk} = \lambda_{sk} / (z_{soil,1} + z_{veg})$$

Skin layer heat flux TESSEL/JULES schemes

TESSEL

$$G_{sk} = \Lambda_{sk} (T_{sk} - T_1)$$

JULES

$$G = G_v^r + G_v^a + G_s$$

Soil thermal conductivity, λ_{soil} , for Falkenberg grass

