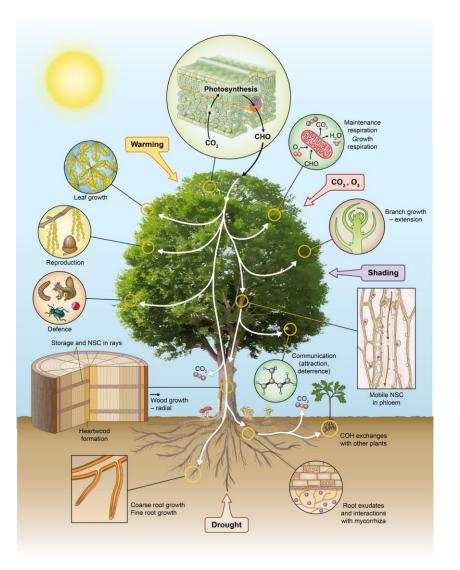
### **Dynamic Carbon** allocation

Becky Oliver, Chris Huntingford, Doug Clark, Lina Mercado, Stephen Sitch, Rachael Turton, Carolina Mayoral, Richard Norby



UK Centre for Ecology & Hydrology

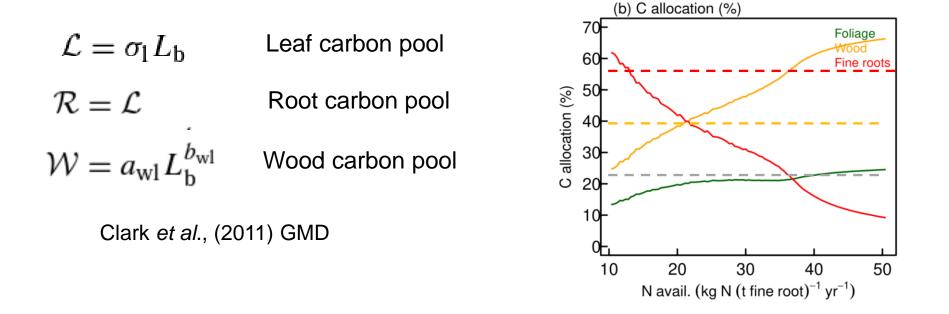



Exeter





### Where does the Carbon go?




Carbon allocation controls the partitioning of carbon fixed in photosynthesis between respiration and biomass production, between short- and long-lived tissues, and between above- and below-ground tissues.

Which organs and processes carbon is allocated to determines the longevity of carbon in the terrestrial biosphere, the interactions between carbon water and nutrient cycles, and numerous other biotic interactions.



• JULES models carbon allocation to leaf, root and wood pools using allometric equations to relate the vegetation C density to the seasonal maximum LAI:

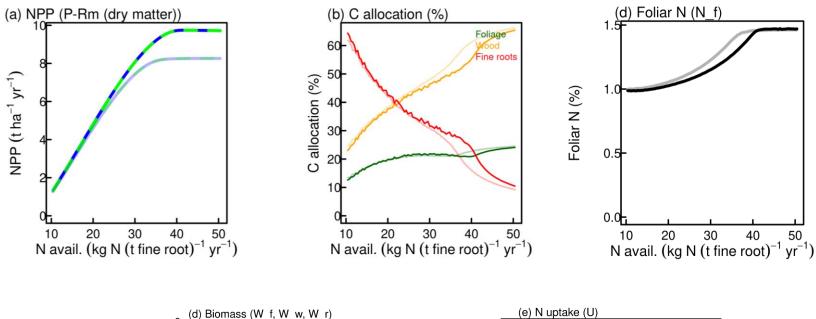


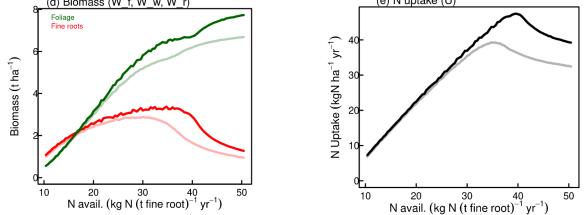
• The proportion of allocation to each pool is invariant, and does not respond to changes in the environment such as changing nutrient status.

# A new Carbon allocation model for JULES based on optimisation theory

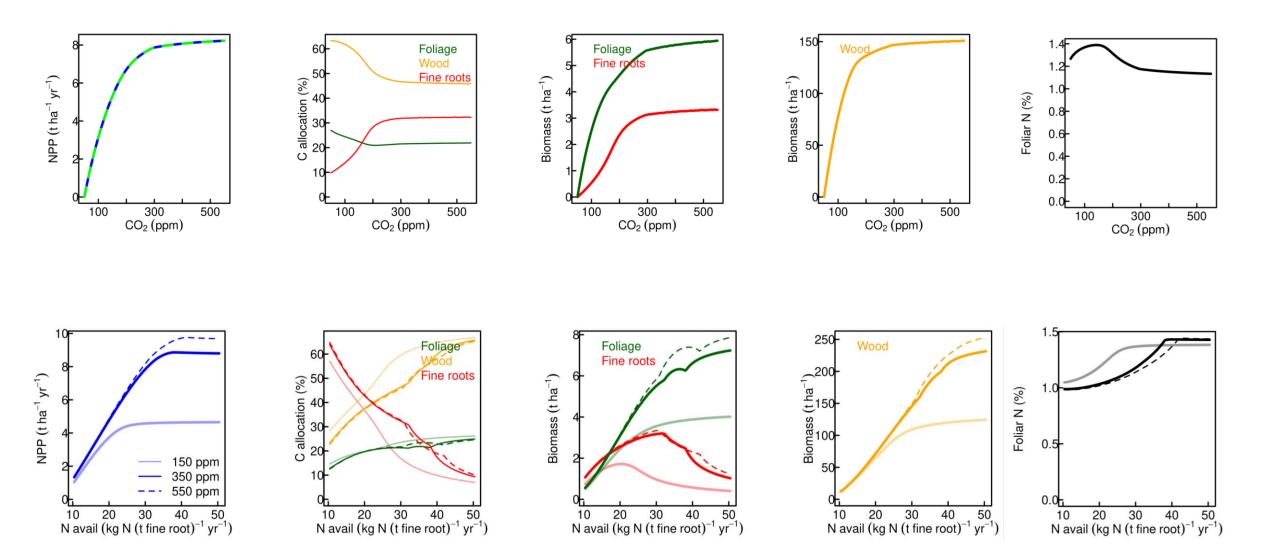
- Optimisation models are concerned with the outcomes of plant mechanisms rather than the mechanisms themselves – helpful for problems such as C allocation where the mechanisms are not fully understood.
- We are using the Makela et al., (2008) model:

Research

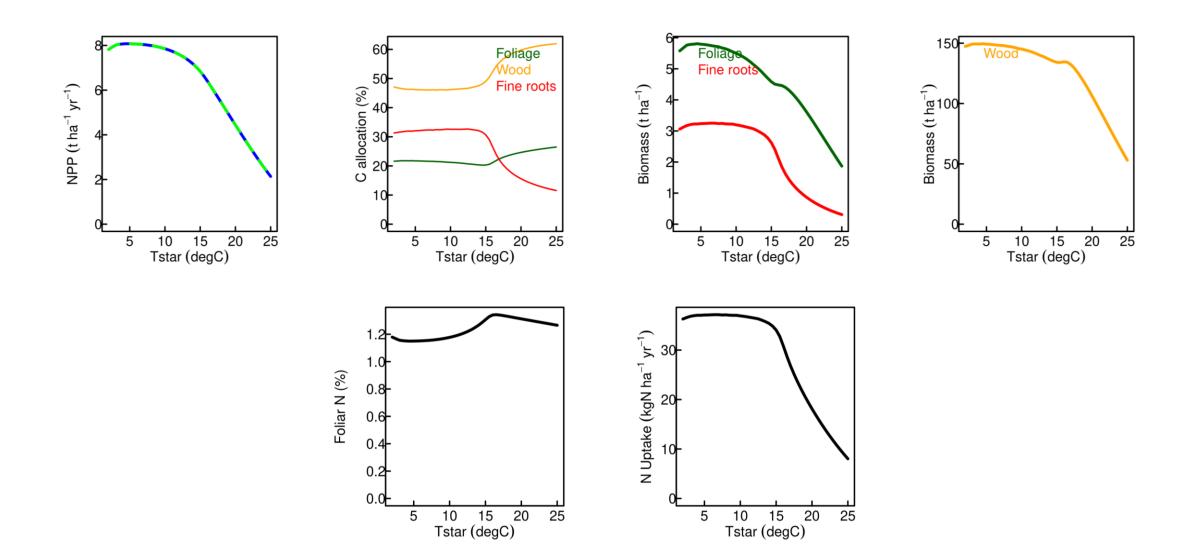

New Phytologist


Optimal co-allocation of carbon and nitrogen in a forest stand at steady state

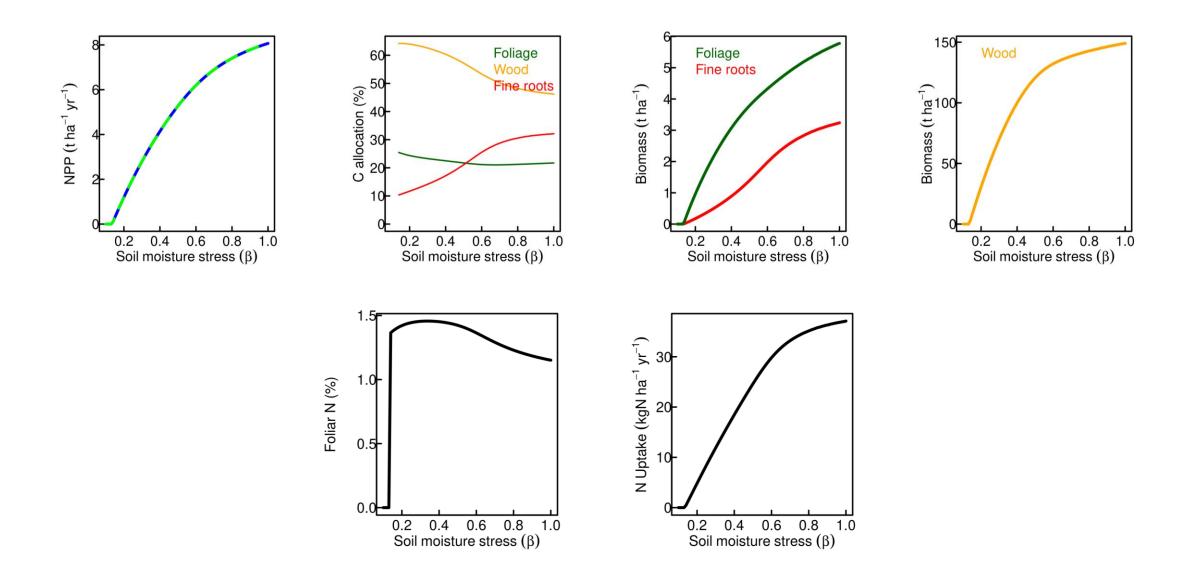
Annikki Mäkelä<sup>1</sup>, Harry T. Valentine<sup>2</sup> and Heljä-Sisko Helmisaari<sup>3</sup>


Maximises NPP with respect to stand-level C and N availability. It describes the balance between C gains (photosynthesis) and C costs (maintenance respiration, fine-root construction) resulting from increased N availability, and how that balance shifts when resource availability changes.

## Incorporating the mechanistic Farquhar photosynthesis model: Response to increasing N availability





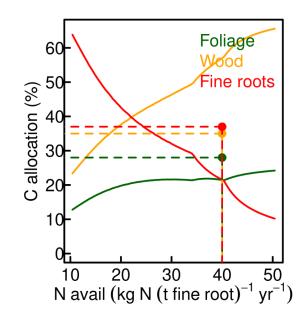


#### Sensitivity to increasing CO<sub>2</sub> concentration



#### Sensitivity to increasing temperature



#### Sensitivity to increasing soil moisture




#### BIFOR: A mature temperate deciduous forest under Free-Air CO2 Enrichment (FACE)

- 23% increase in photosynthesis in eCO<sub>2</sub> (Gardner et al., 2021)
- No change in leaf N is eCO<sub>2</sub> (Gardner et al., 2021)
- No down-regulation of photosynthetic capacity in eCO2 (Gardner *et al.*, 2021)
- 28% increase in basal area increment in eCO<sub>2</sub> (Norby *et al.*,)
- Increased allocation of carbon below-ground in root exudates in eCO<sub>2</sub> (Rumeaue *et al.*, 2023)

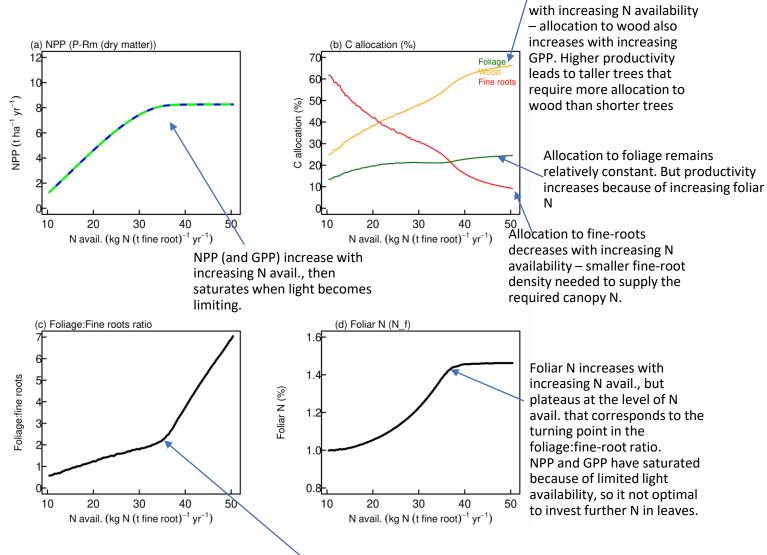
|                                                                           | Amb CO <sub>2</sub> | Elev CO <sub>2</sub> |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------|----------------------|--|--|--|--|--|
| NPP Allocation (%)*                                                       |                     |                      |  |  |  |  |  |
| Wood (+coarse roots)                                                      | 35.00               | 38.00                |  |  |  |  |  |
| Leaves (+reproduction)                                                    | 28.00               | 29.00                |  |  |  |  |  |
| Fine roots (+exudation)                                                   | 37.00               | 33.00                |  |  |  |  |  |
| Leaf N (%) <sup>+</sup>                                                   |                     |                      |  |  |  |  |  |
|                                                                           | 2.61                | 2.65                 |  |  |  |  |  |
| Foliage:fine roots ratio*                                                 |                     |                      |  |  |  |  |  |
|                                                                           | 0.77                | 0.88                 |  |  |  |  |  |
| V <sub>rmay</sub> 25 (umol m <sup>-2</sup> s <sup>-1</sup> ) <sup>+</sup> |                     |                      |  |  |  |  |  |
|                                                                           | 61.64               | 59.74                |  |  |  |  |  |
| J <sub>max</sub> 25 (umol m <sup>-2</sup> s <sup>-1</sup> )*              |                     |                      |  |  |  |  |  |
|                                                                           | 115.38              | 119.82               |  |  |  |  |  |
| LMA (kg m <sup>-2</sup> )*                                                |                     |                      |  |  |  |  |  |
|                                                                           | 0.089               | 0.088                |  |  |  |  |  |

\* Data from Richard Norby for oaks in 2021+ Data from Anna Gardner for oaks in 2019



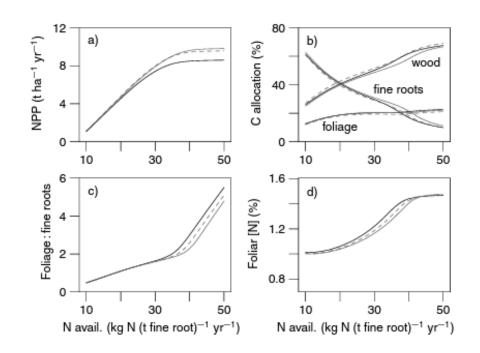
#### Thank you

For more information please contact:


rfu@ceh.ac.uk @UK\_CEH ceh.ac.uk



UK Centre for Ecology & Hydrology


| Mean annual Met. conditions at FI-Hyy      |        |  |  |  |
|--------------------------------------------|--------|--|--|--|
| Temperature (°C)                           | 5.74   |  |  |  |
| Shortwave radiation (W m <sup>-2</sup> )   | 134.61 |  |  |  |
| N availability (kg N (t fine root)-1 yr-1) | 30     |  |  |  |
| CO <sub>2</sub> (ppm)                      | 397    |  |  |  |
| Specific humidity (kg kg <sup>-1</sup> )   | 0.0049 |  |  |  |
| Soil moisture stress (β)                   | 1      |  |  |  |
| Latitude (°N)                              | 61.85  |  |  |  |
| Longitude (°E)                             | 24.3   |  |  |  |

#### Reproducing the Makela model for Pine



The foliage:fine-root ratio increases moderately with increasing N avail, to the point at which fine-root density starts to decrease with increasing N availability compared to foliage density.

#### .....and with elevated CO2



**Fig. S3** Optimal model solutions with the standard parameter set in Table 1 (black), a 10% increase in  $\sigma_{fM0}$ , the nitrogen-saturated specific rate of photosynthesis (gray), and a 10% increase in both  $\sigma_{fM0}$  and  $c_{H}$ , the ratio of average pipe length to foliar N concentration (gray dash).

#### Can the model reproduce observations from BiFOR?

|                         |                                                    |                               | From Makela et al., |         |             |              |
|-------------------------|----------------------------------------------------|-------------------------------|---------------------|---------|-------------|--------------|
|                         |                                                    |                               | (2008)              | Table 1 | Ambient CO2 | Elevated CO2 |
| Paramet                 | er                                                 | Units *Dry weight<br>(DW)     | Pine                | Spruce  | Oak         | Oak          |
|                         | Amount of roots capturing 50% of available         |                               |                     |         |             |              |
| K <sub>r</sub>          | Ν                                                  | kg ha-1                       | 2000                | 2000    | 2000(?)     | 2000(?)      |
|                         | Amount of foliage capturing 50% of max C gain      | kg ha-1                       | 2500                | 8000    | 8000(?)     | 8000(?)      |
| T <sub>f</sub>          | Mean lifetime of foliage                           | yr                            | 3.3                 | 8       | 0.51        | 0.51         |
|                         | Mean lifetime of fine roots                        |                               |                     |         | 1.32*       | 1.15*        |
|                         | Mean lifetime of sapwood                           | yr                            | 40                  | 33.3    | 2           | 2            |
|                         | Growth efficiency                                  | kg DW kg-1 C                  | 1.54                | 1.54    | 1.54(?)     | 1.54(?)      |
|                         | Specific rate of maintenance respiration           | kg-1 C (kg N)-1 yr-1          | 16                  | 16      | 94.61       | 94.61 (?)    |
|                         | N-saturated specific rate of photosynthesis        | kg C (kg foliage*)-1 yr-<br>1 | 8                   | 4       | 45.53       | 62.54        |
| n <sub>r</sub>          | Ratio of fine-root N to foliage N                  | -                             | 1                   | 1       | 0.67 (1.0)  | 0.67 (1.0)   |
| n <sub>w</sub>          | Ratio of sapwood N to foliage N                    | -                             | 0.07                | 0.07    | 0.1         | 0.1          |
| f <sub>i</sub> ,i=f,r,w | Proportion N recycled                              | -                             | 0.3                 | 0.3     | 0.386 (?)   | 0.428 (?)    |
|                         | Sapwood weight per unit foliage and pipe<br>length | m-1                           | 0.8                 | 0.4     | 0.65 (?)    | 0.65 (?)     |
| С <sub>н</sub>          | Steady-state' pipe length coefficient              | m kg-1 N kg DW                | 2800                | 3400    | 1350        | 1350         |
|                         | Concentration of nonphotosynthetic (structural) N  | kg N (kg foliage*)-1          | 0.009               | 0.008   | 0.008 (?)   | 0.008 (?)    |
| N <sub>ref</sub>        | Concentration of photosynthetic N                  | kg N (kg foliage*)-1          | 0.002               | 0.002   | 0.002 (?)   | 0.002 (?)    |