Assessment of Water and Energy Budgets in Major Basins for Land Surface Model Component Evaluation

> Jong Ahn Chun APEC Climate Center

Predictive Modeling for the Interactions in Terrestrial Ecosystems

Applications of Land Information System (LIS)

Earth Systems: Fully Coupled Modeling Approach

Land Information System (LIS) for the Interactions' Predictioins

- Led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center
- A software framework for high performance terrestrial water, energy, and carbon modeling and data assimilation
- To produce optimal fields of land surface sates and fluxes
 - By integrating satellite and ground-based observational data products and advanced modeling techniques
- To enable the use of an ensemble of land surface models

Land Information System (LIS)

Comparative Assessment of Energy and Water Budgets

Configurations

	NOAH	NOAH-MP	JULES
Environment	LIS (DURU system)		Rose/Cylc (NARU system)
Met forcing			
Period	2007–2011		
Resolution	1° × 1°		0.56° × 0.83°
Timestep	15 min		30 min
Spinup	88 years		30 years

Selected basins

-100.0

-100.0

-80.0

-60.0

120.0

140.0

80.0

100.0

120.0

LSM-simulated TWSA

- TWSA: Total column soil moisture, snow water equivalent, and canopy water storage
- GRACE-observed Total Water Storage Anomaly (TWSA)
- Satellite-based soil moisture and ET (GLEAM)
- FluxCom (Qle, Qh)

Data Collections: Water Balance Components

- GRACE-observed Total Water Storage Anomaly (TWSA)
 - TWSA: Simple mean of the CSR, JPL, and GFZ products
 - Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum (GFZ)
 - TWSC (TWS change): [TWSA(t+1)-TWSA(t-1)]/2
- LSM-simulated TWS
 - TWSA: Total column soil moisture, snow water equivalent, and canopy water storage
 - TWSC: *dS/dt* = *P*-*Q*-*ET*

Global Land Evaporation Amsterdam Model (GLEAM)

0.25° × 0.25° daily resolution

Forcing Variable	GLEAM v3.2a	1.	<i>E</i> – Actual evaporation [mm/day]
Radiation	ERA5 ⁸	2.	<i>Ep</i> – Potential evaporation [mm/day]
Air Temperature	FRA5 ⁸	5.	E/ – Interception loss [mm/day]
Dresinitation	MSW/ED v2 29	4.	<i>ED</i> – Bare-soil evaporation [mm/day]
Precipitation	MSWEP V2.2	5.	<i>Es</i> – Snow sublimation [mm/day]
Snow Water Equivalent	GLOBSNOW L3Av2 ¹⁰ & NSIDC vO1 ¹¹	6.	<i>Et</i> – Transpiration [mm/day]
Vegetation Optical Depth	LPRM ^{12,13,14*}	7.	<i>Ew</i> – Open-water evaporation [mm/day]
Surface Soil Moisture**	ECA-CCIV/ 515,16,17	8.	S – Evaporative stress factor [–]
		9.	<i>SMroot</i> – Root-zone soil moisture [m³/m³]
Vegetation fractions	ctions MEaSUREs VCF5KYR_001 ²⁰		<i>SMsurf</i> – Surface soil moisture; 0–10 cm [m³/m

Data Collections: Energy Balance Components

FluxCom

Max Planck Institute for Biogeochemistry

Specifications	FluxCom		
Spatial resolution	0.5°		
Temporal resolution	daily		
Time period	2001-2013		
Machine learning method	3: RF, ANN, MARS		
Climate input	CRUNCEPv8, WFDEI, GSWP3, CERES-GPCP		
Number of flux observations for training	~200,000		
Spatial features	PFT, Max of MSC(WAI _U), Mean of MSC(BAND 6), Max of MSC(fAPAR*Rg)		
Spatial, seasonal features	Rpot, MSC(NDWI), MSC(LST _{Night}), MSC(EVI*Rg)		
Spatial, seasonal, interannual features	Rg, Rain, Rh, Rg*IWA*MSC(NDVI)		

٢

Random forest (RF), Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS),

Primary Attributes of Land Surface Models

Physics	Noah	NoahMP	JULES
Soil hydrology	4 soil moisture layers (0–10, 10–40, 40– 100, 100–200 cm)	4 soil moisture layers (0–10, 10–40, 40–100, 100–200 cm)	4 soil moisture layers (0–10, 10–35, 35–100, 100–300 cm)
Canopy interception (capacity; mm)	0.5 0.5		Minimum canopy capacity: 0.5, a function of LAI; fixed canopy capacity: 0.5 for Urban, 0 for water, soil, & ice
Vegetation transpiration	Sellers et al. (1986)	Ball-Berry (Ball et al., 1987)	Sellers et al. (1986)
Soil thermodynamics	4 soil temperature layers (same as soil moisture); heat conduction equation	4 soil temperature layers (same as soil moisture); heat conduction equation	4 soil temperature layers (same as soil moisture); heat convective-diffusive equation
Snowpack physics	1 snow model layer	3 snow model layers	User-specified N _{max} & d _k
Runoff generation	Surface and free drainage	Surface and baseflow including interaction with groundwater (TOPMODEL)	surface runoff: Dolman and Gregory(1992), soil mositure and baseflow: TOPMODEL
Snow-free albedo	Monthly input background field	Monthly input background field	Bulk albedos; Spectral albedos and snow ageing

Spin-up Behavior Characteristics

 $Percent in change(\%) = \frac{M_1 - M_2}{M_2} \times 100$ $M_1: Monthly mean of soil moisture fromt the previous year$ $M_2: Monthly mean of soil moisture fromt the current year$ $RZ = \frac{\sum_{i=1}^{3} (d_i \times sm_i)}{\sum_{i=1}^{3} d_i} d_i: Deth at i^{th} soil layer$ $Sm_i: Soil moisture at the i^{th} soil layer$ Noah and Noah-MP (m): d_1=0.1, d_2=0.3, d_3=0.6, d_4=1.0
Jules (m): d_1=0.1, d_2=0.25, d_3=0.65, d_4=2.0

Comparisons of Soil Moisture (LSMs – GLEAM)

Water and Energy Budgets in the Selected Basins

Month

Water Balance Components: Soil Moistures and Evapotranspiration: Mississippi Basin

Water Balance Components: Soil Moistures and Evapotranspiration: Tibetan Basin

Energy Balnce Components: Mississippi Basin

Energy Balnce Components: Tibetan Basin

