Lateral thinking: Simulating thermokarst of permafrost peat plateaus

Noah Smith¹, Sarah Chadburn¹, Eleanor Burke², Iain Hartley et al. ¹University of Exeter, ² Met Office

Treed peat plateaus in winter, Canada

What are peat plateaus / palsas?

- Landforms in permafrost peatlands
- Formed by excess ice
- Bistable heterogeneity

Ice lenses

Do they matter?

Permafrost peatlands currently:

- Store 185 Gt carbon (¼ of atmospheric carbon)
- ¹/₂ northern peatland area
- Very small CO₂ sink 0.10 \pm 0.02 PgC y⁻¹
- Methane source 26 ± 2 TgC y⁻¹ (¹/10 anthropogenic methane emissions, ≈coal mining)

With warming of 2°C:

0.7 million km² (40 %) of peatland permafrost area could thaw

By 2100: across scenarios of +1.5 to 6°C a cumulative 0.7 to 3 PgC of methane could be released (1% of projected anthropogenic emissions)

..but this is highly uncertain.

Fraction (%)

(Friedlingstein et al., 2022; Hugelius et al., 2020; Saunois et al., 2020; Walter et al., 2007)

Tiling approach to modelling peat plateau heterogeneity in JULES

We can run this into the future,

But...

The key processes are missing:

 Most thawing of peat plateaus happens laterally

 JULES lacks a representation of excess ice thaw

Introducing lateral thaw

 Most thawing of peat plateaus happens laterally 2D thermal model driven by surface temperatures of two-tile model

Explicit formulation vs JULES

JULES lacks a representation of excess ice thaw

Excess ice:

- Takes up space
- Modifies the average thermal properties
- Thaws after pore ice thaws

Subsidence: Soil variables are reinterpolated onto original layers

(inspired by JULES-peat)

What do we see?

The rate of lateral thaw is correlated with palsa surface temperature

There is a threshold response to thaw

There is a limit to how much lateral thaw rates increase with temperature...

...as at some point the whole palsa thaws from the top down.

Year 2025

Lateral thaw rate \rightarrow areal thaw rate?

0

Lateral thaw

Internal thaw

Lateral thaw rate \rightarrow areal thaw rate?

If areal thaw rate is proportional to edge length,

...how does edge length change with areal thaw?

Peat plateau evolution, d = 2.0 m, timestep = 0.0055 yr, $P_e = 0.055$ y⁻¹, $P_p = 0.0002$ y⁻¹.

Mire

Palsa

Altogether

- Thaw rates too large
- -> Peat depth probably too small?
- Is restoration of palsas needed?
- Distribution of thaw rates?

Palsa fraction

Historical

0.2

0.4

Palsa fraction

0.6

Palsa height

0.8

Summary

- Peat plateaus thaw laterally
- By taking JULES 2D and adding thaw subsidence we can predict lateral thaw rates
- Lateral thaw rates increase with temperature, up to a point
- Fragmentation could be simple
- More testing needed

 \rightarrow Dynamic tiling in JULES?

The problem of perimeter

