

Incorporating crop growth modelling into JULES

Tom Osborne

Andrew Challinor, Tim Wheeler, Dave Lawrence & Julia Slingo

- The basis for our crop modelling: GLAM
- Incorporating crop growth & development into MOSES2
 See: Osborne *et al,* (2007) Global Change Biology, 13; 169-183
- Coupled crop climate variability in HadAM3
- Future challenges for crops in JULES

GLAM – off-line crop model

Crop growth modelling in MOSES

Schematic of crop growth in JULES

Walker

Sowing date based on soil moist ure.

Emergence determined by thermal time accumulation.

In optimum environments, 10 day break post-harvest.

In sub-optimum environments longer restrictions on sowing date.

Crop and climate variability

Walker 2

2 climate simulations

GROW: with growing crop

FIX: without growing crop (same annual cycle of LAI each year)

GROW simulation reproduces observed relationship between rainfall and yield for India r_{obs}=0.62, r_{model}=0.49

SE India June

Growing crops increase climate variability during the early part of the growing season

Soil moisture composite

Soil moisture – climate correlations

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Interactive crops enable a feedback of soil moisture on climate

Future challenges for GLAM-JULES

Walker

Other crops: wheat (spring and winter), maize, soyabean, grasslands

Integration into carbon (and nitrogen) cycling within JULES.

Multiple crop tiles in JULES/MOSES

Humans:

Management: sowing, season length (variety choice), rotations. Technology: yield gap parameter Irrigation Adaptation