Laboratory of Water Resources Management and Coastal Engineering

JULES' VALIDATION AND FLUX PARTITIONING FOR LARGE-SCALE BASINS

Lamprini Papadimitriou

Prof. Ioannis Tsanis

JULES meeting 1-2 of July 2014 Leicester

Introduction

Motivation: Simulation of the water cycle at the global, continental or basin scale

- Need for model validation \rightarrow basin scale
- Scope:
- Evaluate model performance
- Identify model deficiencies comparing performance at different basins

Data & Simulations

- JULES version 3.4.1., default mode
- WFDEI forcing data
- 0.5° x 0.5° grid resolution

- Global runs, Simulation period: 1979-2010
- Outputs: Precipitation, Surface & Subsurface runoff production, Evaporation from soil, Canopy evaporation

Basin extraction from world gridded output

- Watershed delineation using TRIP river routing scheme (flow direction template)
- Location of the gauging station is set as river pour point
- The cells into the boundaries of the watershed are extracted from the global output

Runoff routing

Evaluation (daily time-scale)

Technical University of Crete

- The model shows more "peaky" response.
- Overestimates peaks and underestimates lower flows.

 (\mathbf{O})

Evaluation (daily time-scale)

Daily	NSE	PBIAS(%)	R ²	
I. Danube	-1.57	-38.44	0.566	
II. Volga	-0.2	-20.2 <mark>5</mark>	0.61	
III. Ganges	0.68	-4.04	0.75	
IV. Mississippi	0.24	6	0.63	
V. Amazon	0.06	18.76	0.57	

- Model performance varies between the basins.
- NSE and PBIAS vary significantly but all basins exhibit sufficient linear correlation.

Evaluation (monthly time-scale)

- Model behaviour is clearer at the monthly time-scale.
- High flows are overestimated in most basins. Time of peaking is correct but the simulated discharge values are much higher.

Evaluation (monthly time-scale)

Monthly	NSE	R ²
I. Danube	-1.18	0.71
II. Volga	-0.28	0.67
III. Ganges	0.87	0.86
IV. Mississippi	0.57	0.81
V. Amazon	0.07	0.59

Model performance is better when evaluated at the monthly time-scale.

Evaluation (annual time-scale)

Technical University of Crete

Laboratory of Water Resources Management and Coastal Engineering

Comparing performance at different time-scales

aily	NSE		PBIAS(%))	R ²	
Danube	-1.57		-38.44		0.566	
Volga	-0.2		-20.2 <mark>5</mark>		0.61	
. Ganges	0.68		-4.04		0.75	
/. Mississippi	0.24		6		0.63	
. Amazon	0.06		18.76		0.57	
	Monthly	NSE			R ²	
1	. Danube	-1.18			0.71	
1	I. Volga	-0.28			0.67	
1	II. Ganges	0.87			0.86	
1	V. Mississippi	0.57			0.81	
N	V. Amazon	0.07			0.59	
				Annually		R ²
				I. Dan	ube	0.87
				ll. Vol	ga	0.73
				III. Ga	nges	0.58
				IV. Mi	ssissippi	0.88
				V. Am	azon	0.08

D

Ι.

II.

IV

V

Discharge Seasonality

20000

15000

10000

5000

Discharge [m3/s]

I. Danube

Data — Model(3,10)

- Averages per month for all years
- Model deficiencies can be identified
- Differences in the performance between the basins and throughout the year

Partitioning water cycle fluxes

- Partitions seem to follow the same pattern in all basins.
- Surface runoff
 production is very
 small compared to
 the other fluxes.
 Discharge is
 practically governed
 only by subsurface
 runoff production.

Basin and time average of total annual fluxes

Seasonal flux partitioning

For **Danube** and **Volga** evaporation from soil and from canopy (ET) are the largest components during the wet seasons.

Ganges exhibits higher subsurface runoff during the wet season compared to the dry season.

Seasonal flux partitioning

For **Mississippi** the governing partition is evaporation from soil, especially during the wet season. The subsurface runoff component is small all year round.

Amazon exhibits the smallest soil evaporation partition and the largest subsurface runoff partition compared to the other basins, especially for the wet months.

Concluding remarks

- For the same run, model performance varies between different basins.
- Simulations are more robust at larger time-scales.
- Surface runoff production (in the default model version) is a very small part of the water balance, almost negligible for discharge calculation.

...and some questions to be answered

- Can we calibrate? Which parameters can improve model performance in terms of the simulation of the water cycle components? Which parameters would affect flux partitioning?
- Is it possible to calibrate at the global scale?

Laboratory of Water Resources Management and Coastal Engineering

Thank you! Any questions?

Lamprini Papadimitriou

Prof. Ioannis Tsanis

JULES meeting 1-2 of July 2014 Leicester