It is now possible to measure soil moisture at sub-kilometer scale using cosmic-ray neutrons

Rafael Rosolem

Department of Civil Engineering University of Bristol

JULES Meeting 2 July 2014

This talk is organized as follows:

- soil moisture and scaling issues
- cosmic-ray soil moisture measurements
- modeling soil moisture cosmic-ray neutron interactions
- example of applications
 - parameter estimation
 - state estimation
- measurement networks
- summary

soil moisture and scaling issues

Soil moisture plays a key role in controlling hydrometeorological processes at various spatiotemporal scales...

Adapted from Blöschl and Sivapalan (1995; Hydrol. Process.), Robinson et al. (2008; Vadose Zone Journal), and Crow, et al. (2012; Rev. Geophys.)

but we cannot measure soil moisture at all possible scales!!!

Adapted from Blöschl and Sivapalan (1995; Hydrol. Process.), Robinson et al. (2008; Vadose Zone Journal), and Crow, et al. (2012; Rev. Geophys.)

cosmic-ray soil moisture measurements

New technology provides an opportunity to estimate soil moisture using cosmic rays

Continuous estimates of soil moisture over an area of ~30 ha and effective depths of tens of cm

University of BRISTOL

Fast neutrons produced from cosmic rays are predominantly moderated by water molecules in the soil

CRS soil moisture compares very well with network of pointscale measurements within same horizontal footprint

CRS provides an opportunity to measure soil moisture at unprecedented spatial scales in hydrometeorology!

Adapted from Blöschl and Sivapalan (1995; Hydrol. Process.), Robinson et al. (2008; Vadose Zone Journal), and Crow, et al. (2012; Rev. Geophys.)

CRS provides an opportunity to measure soil moisture at unprecedented spatial scales in hydrometeorology! 100 yrs 10⁰ 10¹ 10 Climate time (s) annual rainfall, 108 snowmelt, evaporation Satellite SANTANIASTICKASSICION Seasonal to interannual 1 yr remote sensing 107 diurnal rainfall. nowmelt, evaporation 1 mon 106 105 1 d 104 370 Cosmic-ray Weather 1 h sensors (CRS) 103 10² Time-domain 1 min reflectometry SW (TDR) 100 km 10 m 10 km 1000 km 10000 k 1 m 100 m 1 km Meteorological forcing Land cover patterns Soil moisture **Topographic features** controlling factors Soil texture and structure

Adapted from Blöschl and Sivapalan (1995; Hydrol. Process.), Robinson et al. (2008; Vadose Zone Journal), and Crow, et al. (2012; Rev. Geophys.)

modeling soil moisture & cosmic-ray neutron interactions

Integrated soil moisture from CRS can reach multiple soil layers in land models

Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 Nov-10 Dec-10 Jan-11 Feb-11 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11

COsmic-ray Soil Moisture Interaction Code (COSMIC) captures essential below-ground physics in parametric form

example of applications: parameter estimation

Calibration of soil properties in land models using cosmic-ray neutron counts as target variable

Soil moisture profile compares well with network of point-scale measurements within same effective area

example of applications: state estimation

Assimilation of neutron observations improves the dynamics relative to the true neutron count!

Simulated soil moisture profile is improved remarkably even beyond the sensor effective depth!

Rosolem et al. 2014 (HESSD)

cosmic-ray soil moisture networks

The use of CRS has been rapidly growing within the hydrometeorological community!

to summarize...

 Integrated soil moisture at intermediate scales through cosmic-ray neutron interactions

- Integrated soil moisture at intermediate scales through cosmic-ray neutron interactions
- Simple and robust model for soil moisture – neutrons interactions (COSMIC)

- Integrated soil moisture at intermediate scales through cosmic-ray neutron interactions
- Simple and robust model for soil moisture – neutrons interactions (COSMIC)
- Neutron signal used successfully to constrain model parameters

0.5 17/03/11 07/10/11 07/17/11 07/24/11 07/31/11 08/07/11 08/14/11 08/21/11 08/28/11 09/04/11 09/11/11

- Integrated soil moisture at intermediate scales through cosmic-ray neutron interactions
- Simple and robust model for soil moisture – neutrons interactions (COSMIC)
- Neutron signal used successfully to constrain model parameters
- Assimilation of neutron counts improves simulated soil moisture even at deeper soil layers

07/10/11 07/17/11 07/24/11

08/07/11 08/14/11 08/21/11 08/28/11 09/04/11 09/11/1

- Integrated soil moisture at intermediate scales through cosmic-ray neutron interactions
- Simple and robust model for soil moisture – neutrons interactions (COSMIC)
- Neutron signal used successfully to constrain model parameters
- Assimilation of neutron counts improves simulated soil moisture even at deeper soil layers

Would like to test those with JULES in the very near future!!!

rafael.rosolem@bristol.ac.uk