Global Soil Organic Nitrogen

Andy Whitmore Margaret Glendining, Goetz Richter and David Powlson Soil Science Department, Rothamsted Research

John Catt, UCL

Aims

- 1 Create database of soil organic nitrogen from published and unpublished sources
- 2 Derive simple PTFs (Pedotransfer functions) to predict soil organic nitrogen from other simple measured soil and site properties
- 3 Derive maps of soil organic nitrogen status for use by the ecosystem modellers. QUERCC/QUEST

1) Global soil fertility dataset

Main sources: WISE 2002 (2525); Amazon(374); CanFor (700); Europe SPADBE (325); Russia (250) + others.

Brazil Cooper et al (5500) kept for validation

Topsoil (not litter layers) 3300 sites %N

Dataset Problems & Solutions

Problems

- Incomplete data set, no source has measured all properties at all sites
- Patchy geographic distribution
- Several different soil order classification systems
- Soil order information not always available (eg Russia)
- Different definitions of 'clay' from different sources

Solutions

- Extract sub-sets to analyse individual properties.
- Key regions are well covered
- Translated to FAO 1974
 legend (DSMW) expert advice
- Devised PTF based on other measured soil properties
- No solution unable to use this data.

Existing PTFs in literature

• Total soil %N:

- 1. Soil organic C most important explaining 70+% of variance in %N.
- 2. Soil %clay and %silt important via effect on %C
- 3. Land use history (arable, grassland, forest) via effect on %C
- 4. Soil order

2) Development of PTFs to predict soil total %N

Used Multiple Linear Regression techniques to predict soil %N from other properties from soil fertility dataset:

- <u>Site properties</u>: latitude, altitude, land use, region, aspect, slope, soil type ...
- <u>Soil properties</u>: organic %C, pH, C:N, exchangeable cations, CEC, % clay, % sand ...
- Max data set of 3306 topsoil samples, sub-sets to look at particular effects

Effect of land use class

- **Natural** (native forest, native grassland etc)
- **Semi-natural** (planted forest, extensive grassland etc)
- Cultivated (intensive agriculture, including grassland where fertilizer would be applied)
- Interaction between land use and data source/ location/ soil
- Total N analysis include all
- Available P analysis exclude cultivated

Land use classes, mineral soils

Effect of soil organic %C

Total %N v soil organic C%

Derived soil order C:N ratio

- Data sub-set sites with FAO 1974 soil orders
- N = 3058
- Where less than 20 values used mean for mineral soils

Effect of soil texture on %N

- Topsoil texture class defined by FAO:
- Class 1 Coarse, <15%clay and>65%sand
- Class 2 Medium, <35%clay
- Class 3 Fine >35% clay
- Including texture class as a variate improves the prediction of total soil N (<0.001). Texture class is included in the DSMW.

Effect of soil order C:N and latitude

Outliers: Ob%N - Pred%N of 0.5%N or more, n=85

Total %N also has a small negative relationship with latitude

Validation of soil %N PTFs:

Brazilian database (Cooper et al, 2005)

OrgC%, soil order C:N, latitude, org/min

3648 data points, Omitting sites with C:N<3 or >100

C) Predicting total %N without knowledge of soil organic C%

Model 1: pH, %clay, %sand, latitude, org/min

- 49% variance explained
- RMS = 0.0250
- N = 2365

3) Deriving maps of soil %N

Based on the Digital Soil Map of the World, DSMW (FAO 1995)

FAO 1974 legend:

- 26 major soil orders (A-Z)
- 106 soil units
- Three texture classes (fine, med, coarse)
- Dominant Soil in each SMU
- Derived soil organic C map, based on estimates of organic C% for each soil order and texture class (Batjes 2002)

DSMW, non-soils

Derived soil total %N map

OrgC%, latitude, soil order C:N, for organic and mineral soils (>10%orgC) Resolution 5 x 5 minutes

Summary of total % N

- Equations derived for soil total %N:
- All based on soil organic C%, plus other information as available:
 - With **site** information soil order, texture and latitude
 - With **soil** information pH, %clay
 - With site **AND** soil information
- Maps derived, based on the DSMW (FAO 1974 legend)
 soil order, texture class and OrgC%
- Can use either maps or equations to predict soil total %N in ecosystem models
- Uncertainty analysis demonstrates that error in inputs is not amplified in the outputs

Summary of all soil %N PTFs

Parameters OrgC%	Obs%N	Model 1	Model 2 ✓	Model 3 ✓	Model 4 ✓	Model 6 ✓
Latitude		\checkmark	1	\checkmark		\checkmark
Texture class				\checkmark		\checkmark
Soil order C:N		\checkmark	\checkmark	\checkmark		\checkmark
рН		\checkmark			✓	\checkmark
%clay		\checkmark			\checkmark	\checkmark
% sand		\checkmark				
Org/min 10%orgC		\checkmark	\checkmark		\checkmark	\checkmark
Org > 40 deg OR>1500m				\checkmark		
Original derived model						
% variance explained		49.0	80.4	82.2	82.3	83.4
RMS		0.02489	0.00956	0.00868	0.00864	0.00812
Number		2365	2365	2365	2365	2365
Median %N	0.160	0.195	0.159	0.163	0.162	0.163
Correlation with Obs %N	1	0.682	0.896	0.905	0.907	0.914
RMSE		0.178	0.099	0.095	0.093	0.090

G) Predicting total %N without knowledge of soil order or location

Model 4: OrgC%, pH, %clay, org/min

- 82.3% variance explained
- RMS = 0.00864
- N = 2365

Fig. 2. Estimated N deposition from global total N (NOy and NHx) emissions, totaling 105 Tg N y⁻¹. The unit scale is kg N ha⁻¹ y⁻¹, modified from the original units (mg m⁻² y⁻¹) (*16*).

Galloway et al Science 2008