Publications

Publications using or describing JULES

For the 'technical documentation' papers Best et al. (2011) and Clark et al. (2011) please see the About page. For some relevant pre-2007 publications, see the table of Archive versions here.

If you can't get hold of any paper below via institutional subscriptions to the relevant journal, please email the JULES help list (am sure the request will be well-received because we know many don't have easy access and someone will almost certainly have it). If you would like to have your paper using JULES listed here, please send us an email and we will add it (see Contact Us at the foot of this page).

 

2019

Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., Robertson, E., and Wiltshire, A.: Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES), Geosci. Model Dev., 12, 179-193. link

Vinodkumar, and I. Dharssi. Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management, Agriculture and Forest Meteorology 264:27–39. doi: 10.1016/j.agrformet.2018.09.012. link

Zhao, M., Zhang, H. & Dharssi, I. On the soil moisture memory and influence on coupled seasonal forecasts over Australia. Climate Dynamics. link

 

2018

Burke et al. CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters. link

Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S., Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857-2873, https://doi.org/10.5194/gmd-11-2857-2018, 2018.  link

Parker, R.J. et al. Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations. RSE. link

Pugh et al. A Large Committed Long‐Term Sink of Carbon due to Vegetation Dynamics. Earth's Future. link

Rap A, Scott CE, Reddington CL, Mercado L, Ellis RJ, Garraway S, Evans MJ, Beerling DJ, MacKenzie AR, Hewitt CN, Spracklen DV. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nature Geoscience 11:640-644. link

Warren E, C Charlton-Perez, S Kotthaus, H Lean, S Ballard, E Hopkin, S Grimmond. Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions Atmospheric Environment 191:532-547. link

 

2017

Burke E., A. Ekici, Y. Huang, S. Chadburn, C. Huntingford, P. Ciais, P. Friedlingstein, S. Pengand G. Krinner (2017). Quantifying uncertainties of permafrost carbon-climate feedbacks. Biogeosciences 14:3051-3066. link

Burke E., S. Chadburn and A. Ekici (2017). A vertical representation of soil carbon in the JULES landsurface scheme (vn4.3permafrost) with a focus on permafrost regions. Geoscientific Model Development 10:959-975. link

Hopcroft, P.O., Valdes, P.J., Harper, A.B. & Beerling, D.J. (2017). Multi vegetation model evaluation of the Green Sahara climate regime, Geophysical Research Letters, 6804-6813. link

Iwema, J., Rosolem, R., Rahman, M., Blyth, E., and Wagener, T.: Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration, Hydrol. Earth Syst. Sci., 21, 2843-2861, 2017. link

Nakhavali, M., Friedlingstein, P., Lauerwald, R., Tang, J., Chadburn, S., Camino-Serrano, M., Guenet, B., Harper, A., Walmsley, D., Peichl, M., and Gielen, B. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development Discussions. link

Rahman, M. and Rosolem, R.: Towards a simple representation of chalk hydrology in land surface modelling, Hydrol. Earth Syst. Sci., 21, 459-471, doi:10.5194/hess-21-459-2017, 2017. link

Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth System Science Data 9:389-413. link

Slevin D, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams. Global evaluation of gross primary productivity in the JULES land surface model v3.4.1. Geoscientific Model Development link

Williams, K., Gornall, J., Harper, A., Wiltshire, A., Hemming, D., Quaife, T., Arkebauer, T., and Scoby, D. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska. Geoscientific Model Development 10:1291-1320. link

 

2016

Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S., Mercado, L. M., Groenendijk, M., Robertson, E., Kattge, J., Bönisch, G., Atkin, O. K., Bahn, M., Cornelissen, J., Niinemets, Ü., Onipchenko, V., Peñuelas, J., Poorter, L., Reich, P. B., Soudzilovskaia, N. A., and Bodegom, P. V.: Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information, Geosci. Model Dev., 9, 2415-2440, doi:10.5194/gmd-9-2415-2016, 2016.

O'Sullivan, M., A. Rap, C. L. Reddington, D. V. Spracklen, M. Gloor, and W. Buermann. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century, Geophys. Res. Lett., 43, 8060–8067, doi:10.1002/2016GL068965.

Papadimitriou, L.V., Koutroulis, A.G., Grillakis, M.G. and Tsanis, I.K., 2016. High-end climate change impact on European runoff and low flows-exploring the effects of forcing biases. Hydrology and Earth System Sciences, 20(5), p.1785.
Van den Hoof, C., and F. Lambert. Mitigation of drought negative effect on ecosystem productivity by vegetation mixing, J. Geophys. Res. Biogeosci., 121, doi:10.1002/2016JG003625.

TeBeest, M., Sitters, J., Menard, C. Oloffson, J. Reindeer  grazing  increases  summer  albedo  by  reducing  shrub abundance  in  Arctic  tundra, Environmental Research Letters 11. link

 

2015

Anav et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics. link

Chadburn S., E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox and P. Friedlingstein. An improved representation of physical permafrost dynamics in the JULES land-surface model. Geoscientific Model Development 8:1493-1508. link

Chadburn S., E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox and P. Friedlingstein. Impact of model developments on present and future simulations of permafrost in a global land-surface model. The Cryosphere 9:1505-1521. link

Ekici A., S. Chadburn, N. Chaudhary, L. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. Friend,C. Hauck, G. Krinner, M. Langer, P. Miller, and C. Beer. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9:1343-1361. link

Ménard, C.B., Ikonen, J., Rautiainen, K., Aurela, M., Arslan, A.N., and Pulliainen, J. Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods on Model Performance and Uncertainty in a Land Surface Model, Journal of Hydrometeorology, 16, 2559-2576

Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.: JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator, Geosci. Model Dev., 8, 1139-1155, doi:10.5194/gmd-8-1139-2015.

Rap, A., Spracklen, D.V., Mercado, L., Reddington, C.L., Haywood, J.M., Ellis, R.J., Phillips, O., Artaxo, P., Bonal, D., Restrepo Coupe, N., Butt, N. Fires increase Amazon forest productivity through increases in diffuse radiation, Geophysical Research Letters, 42(11), 4654-4662, doi:10.1002/2015GL063719.

Slevin, D., Tett, S. F. B., and Williams, M.: Multi-site evaluation of the JULES land surface model using global and local data, Geosci. Model Dev., 8, 295-316, doi:10.5194/gmd-8-295-2015.

Weedon, G.P., Prudhomme, C., Crooks, S., Ellis, R.J., Folwell, S.S., and Best, M.J. Evaluating the performance of hydrological models via cross-spectral analysis: case study of the Thames Basin, United Kingdom. J. Hydrometeorol. 16, 214-231, doi: 10.1175/JHM-D-14-0021.1.

Williams, K. E. and Falloon, P. D.: Sources of interannual yield variability in JULES-crop and implications for forcing with seasonal weather forecasts, Geosci. Model Dev., 8, 3987-3997, doi:10.5194/gmd-8-3987-2015.

Yang Yang, Michael Uddstrom, Grant Pearce, and Mike Revell. Reformulation of the Drought Code in the Canadian Fire Weather Index System Implemented in New Zealand. J. Appl. Meteor. Climatol., 54, 1523–1537.

 

2014

Gedney, N., Huntingford, C., Weedon, G.P., Bellouin, N., Boucher, O. and Cox, P.M. Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 7, 796-800, doi:10.1038/NGEO02263.

Harding, R.J., Weedon, G.P., van Lanen, H.A.J. and Clark, D.B. The future for global water assesment. Journal of Hydrology, 518, 186-193, doi:10.1016/j.jhydrol.2014.05.014.

Tsarouchi, G. M., Buytaert, W., and Mijic, A.: Coupling a land surface model with a crop growth model to improve ET flux estimations in the Upper Ganges basin, India, Hydrol. Earth Syst. Sci. Discuss., 11, 6843-6880, doi:10.5194/hessd-11-6843-2014.

Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.

 

2013

Burke, E. J.; Dankers, R.; Jones, C. D.; Wiltshire, A. J. A retrospective analysis of pan Arctic permafrost using the JULES land surface model, Climate Dynamics, 41: 1025-1038

De Kauwe, Martin G., Taylor, Christopher M., Harris, Philip P., Weedon, Graham P. and Ellis, Richard J. Quantifying Land Surface Temperature Variability for Two Sahelian Mesoscale Regions during the Wet Season. Journal of Hydrometeorology, doi: 10.1175/JHM-D-12-0141.1.

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-castells, J., Meir, P., Betts, R., Harris, P. P., Nobre, C., Marengo, J., & Cox, P. M. Simulated resilience of tropical rainforests to CO2-induced climate change, Nature Geoscience, 6(4), 268–273. 10.1038/ngeo1741

Jiménez, C., D.B.Clark , J. Kolassa, F.Aires, C.Prigent. A joint analysis of modeled soil moisture fields and satellite observations, Journal of Geophysical Research (Atmospheres), 118: 6771-6782. doi: 10.1002/jgrd.50430.

Maskell, L.C., A. Crowe, M.J. Dunbar, B. Emmett, P. Henrys, A.M. Keith, L.R. Norton, P. Scholefield, D.B. Clark, I.C. Simpson, S.M. Smart. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity, J. Applied Ecology, 50 (3): 561-571. doi: 10.1111/1365-2664.12085.

D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): Applications to numerical weather forecasting and the CO2 budget in South America, Geosci. Model Dev., 6, 1243-1259

Sorensen J.P.R., Finch J.W., Ireson A.M., Jackson C.R. Comparison of varied complexity models simulating recharge at the field scale. Hydrological Processes, 28(4), 2091–2102, DOI: 10.1002/hyp.9752.

C. Van den Hoof, P.L. Vidale, A. Verhoef and C. Vincke: Improved Evaporative Flux Partitioning and Carbon Flux in the Land Surface Model JULES: Impact on the Simulation of Land Surface Processes in Temperate Europe, Agric. Forest Meteorol. 181:137–153.

Yang, Yang, Uddstrom, M., Revell, M. and Moore, S. Soil moisture simulation by JULES in New Zealand: verification and sensitivity tests. Met. Apps. doi: 10.1002/met.1426

Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W., and Guyot, J. L.: A critical assessment of the JULES land surface model hydrology for humid tropical environments, Hydrol. Earth Syst. Sci., 17, 1113-1132, doi:10.5194/hess-17-1113-2013.

 

2012

A. Arneth, L. Mercado, J. Kattge, and B. B. B. Booth. Future challenges of representing land-processes in studies on land-atmosphere interactions, Biogeosciences, 9, 3587-3599

Blyth, E., D. B. Clark, R. Ellis and C. George. Using earth observation data to evaluate a land surface model in three Siberian catchments. Boreal Env. Res., 17: 484-494

Burke et al. Uncertainties in the global temperature change caused by carbon release from permafrost thawing. The Cryosphere, 6, 1063-1076. link

Finney, D. L., Blyth, E., and Ellis, R.: Improved modelling of Siberian river flow through the use of an alternative frozen soil hydrology scheme in a land surface model, The Cryosphere, 6, 859-870, doi:10.5194/tc-6-859-2012.

Gudmundsson, L., L. M. Tallaksen, K. Stahl, D. B. Clark, E. Dumont, S. Hagemann, N. Bertrand, D. Gerten, J. Heinke, N. Hansaki, F. Voss, S. Koirala. Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe, J. Hydrometeorology, 13: 604-620. doi: 10.1175/JHM-D-11-083.1

Hong, J., J. Kim and Y.-H. Byun. Uncertainty in carbon exchange modeling in a forest canopy due to kB-1 parameterizations, Quarterly Journal of the Royal Meteorological Society, 138, 699-706.

Marthews T.R., Malhi Y., Girardin C.A.J., Silva-Espejo J.E, Aragao L.E.O.C, Metcalfe D.B, Rapp J.M, Mercado L.M, Fisher R.A, Galbraith D.R, Fisher J.B., Salinas-Revilla N., Andrew D. Friend A.D. and Restrepo-Coupe N. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology 18,2882-2898

 

2011

Blyth, E., D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best and S. Sitch. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale, Geosci. Model Dev., 4, 255-269, doi:10.5194/gmd-4-255-2011

Falloon et al. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. GBC. link

Haddeland, I., D.B. Clark, W. Franssen, F. Ludwig, F. Voß, N. W. Arnell, N. Bertrand, M. Best, S. Folwell, D. Gerten, S. Gomes, S. N. Gosling, S. Hagemann, N. Hanasaki, R. Harding, J. Heinke, P. Kabat, S. Koirala, T. Oki, J. Polcher, T. Stacke, P. Viterbo, G. P. Weedon, P. Yeh. Multi-Model Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, doi:10.1175/2011JHM1324.1

Hong, J. and J. Kim. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: A wavelet analysis and its ecosystem modeling implication, Global Change Biology, 17(5), 1900-1916.

Huntingford C., Cox P.M, Mercado L.M., Sitch S., Bellouin N., Boucher O. and Gedney O. Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services. Phil, Trans, R. Soc A doi:10.1098/rsta.2010.0314

Pacifico, F., Harrison, S. P., Jones, C. D., Arneth, A., Sitch, S., Weedon, G. P., Barkley, M. P., Palmer, P. I., Serça, D., Potosnak, M., Fu, T.-M., Goldstein, A., Bai, J., and Schurgers, G.: Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions, Atmos. Chem. Phys., 11, 4371-4389, doi:10.5194/acp-11-4371-2011.

Prudhomme, C., S. Parry, J. Hannaford, D.B.Clark, S. Hagemann, F. Voß. How well do large-scale models reproduce regional hydrological extremes in Europe?, J. Hydrometeorology, 12: 1181-1204. doi: 10.1175/2011JHM1387.1

C. Van den Hoof, E. Hanert, P.L. Vidale: Simulating dynamic crop growth with an adapted land surface model – JULES-SUCROS: model development and validation, Agric. Forest Meteorol. 151:137–153

Yang, Yang, M. Uddstrom, and M. Duncan. Effects of short spin-up periods on soil moisture simulation and the causes over New Zealand, J. Geophys. Res., 116, D24108, doi:10.1029/2011JD016121.

 

2010

Bennie, J.J., A.J. Wiltshire, A.N. Joyce, D. Clark, A.R. Lloyd, J. Adamson, T. Parr, R. Baxter and B. Huntley. Characterising inter-annual variation in the spatial pattern of thermal microclimate in a UK upland using a combined empirical-physical model, Agricultural and Forest Meteorology, 150(1), 12-19, doi:10.1016/j.agrformet.2009.07.014

Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B. W., Ramankutty, N., Heimann, M., and Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe, Biogeosciences, 7, 2749-2764, https://doi.org/10.5194/bg-7-2749-2010. link

Dadson, S.J., I. Ashpole, P. Harris, H.N. Davies, D.B. Clark, E. Blyth, C.M. Taylor. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region, J. Geophys. Res., 115, D23114, doi:10.1029/2010JD014474

Huntingford, C., Booth, B. B. B., Sitch, S., Gedney, N., Lowe, J. A., Liddicoat, S. K., Mercado, L. M., Best, M. J., Weedon, G. P., Fisher, R. A., Lomas, M. R., Good, P., Zelazowski, P., Everitt, A. C., Spessa, A. C., and Jones, C. D. IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate, Geosci. Model Dev., 3, 679-687, doi:10.5194/gmd-3-679-2010.

Peters et al.. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. GCB. link

 

2009

Boone, A., P. de Rosnay, G. Balsamo, A. Beljaars, C. Chopin, B. Decharme, C. Delire, A. Ducharne, S. Gascoin, M. Grippa, F. Guichard, Y. Gusev, P. Harris, L. Jarlan, L. Kergoat, E. Mougin, O. Nasonova, A. Norgaard, T. Orgeval, C. Ottlé, Y. France, I. Poccard-Leclercq, J. Polcher, I. Sandholt, S. Saux-Picart, C. Taylor, and Y. Xue. The AMMA land surface model intercomparison project (ALMIP). Bull. Amer. Met. Soc., 90, 1865–1880, doi:10.1175/2009BAMS2786.1.

Ellis, R. J., C. M. Taylor, G. P. Weedon, N. Gedney, D. B. Clark and S. Los. Evaluating the simulated seasonality of soil moisture with earth observation data, Journal of Hydrometeorology, 10, 1548-1560

Mercado L.M, Bellouin N., Sitch S., Boucher O., Huntingford C., Wild M. and Cox P.M. Modeling the impact of diffuse radiation changes on the terrestrial carbon sink over the 1900-2000 period. Nature, 458, 1014-1018

 

2008

Harrison, R. G., Jones, C. D., and Hughes, J. K.: Competing roles of rising CO2 and climate change in the contemporary European carbon balance, Biogeosciences, 5, 1-10, https://doi.org/10.5194/bg-5-1-2008. link

Huntingford C, Fisher RA, Mercado LM, Booth BB, Sitch S, Harris PP, Cox PM, Jones CD, Betts RA, Malhi Y, Harris GR, Collins M, Moorcroft P. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos Trans R Soc Lond B Biol Sci. 363(1498):1857-64.

Sitch, S. et al.. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). GCB. link

Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561-583, https://doi.org/10.5194/bg-5-561-2008. link

 

2007

Alton, P., L. Mercado, and P. North. A sensitivity analysis of the land-surface scheme JULES conducted for three forest biomes: Biophysical parameters, model processes, and meteorological driving data, Global Biogeochem. Cycles, 20, GB1008, doi:10.1029/2005GB002653

Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology 59:553-565.